Musical Form: Classical & Romantic Eras: Sonata

♭94cSyQIwqBBg8D71Ww222w2iORCpV3QLahQoaJmcd/Tq1zCLOnp6aB8BClPq9W63e7AwMD09HTGv6qKuJWa14BGNRqN1WqFHavlN2rRTV+yLCckJKCIqtFo/P3933nnHbvdLghCWFjY0qVLZc6gV+lFU6FCRQVwH9OrLMsej6e4uDgzM3P06NFmsxk3rep0uujoaNgtKnNyLhrxq5SDioqKVq5cqdFoWrRogXdofspGYWEh0Cv4OVAlssPhcDgcer3+woULMikIDfCqQoWKGsd9TK+4EI6JiUGzD0QJqFu37ubNm+ExDIjFvMhfV2KuAJmZmX5+fv7+/jdu3KC/3lWSxdx++umnvr6+SKwgw7pcrl27dnnLvyq9qlBRS3B/0CtDFiiBnjt3zmKxoEMryK1WqzU1NVUuLbTWiEwniqK/v7/D4fjmm29o5vGa8qwoilQtgPYx5FZBEAICAvr06SNxwRVVqKhOeJvUVTC4D+gVWRJPk4aLoUOH4u57IFa73R4aGsrsU5Krt+2ZfV/du3fX6XSvv/66XNqNTCZiJqV+UHfAxZIlS+DsLCidVqt1Op3Xrl1jPqRCRZVCcTej7CUApgqK+4BeZSWWfP311wMCAqjc6u/v3759e/oW3bFaDWTEfAgu3n77bUEQmGOxeRUBX8Dff/+9bt26qE0GvPzyy/Rz1BdChYrKBe2uDKvyT6r9UBH3A0yq2lJkuDYKGAcuAgLC+vXrx99pabsPNDV8LtfffWVXq+HaNZYBLn0Vi7eXWzHjh1ms9nHx4cqlP38/I4cOaIar1RUD8pmTOono3KrN9wH9CoTXyVRFHG9jPGtw8PDhw0bBg8wE2lN+YGi4Lxz506bzebn58f/xAfbhpsvv/wy9RZA3avVakXFCK7LVKpVUT3wpgpQRdcycB/QKzbetWvXAgICqKlHo9FERUXB7v7i4mK68RQZGbi1enoAmqTwc7t377ZYLDabTfYSYxtOlIGfRo0aBTpW8N5FX1cobOPGjZnZQrVrqahq8AOHiqvl2YX4v4z7gF4Bd+7cCQoKwnNZQHS1Wq2bNm2SlU5plUvPt9VDr/y21//7v/8zGAy+vr6yUl/E3GZlZYWEhPj5+fn5+f3nP/8ZNGgQqpWhyHq9fvbs2fRFVWpQUaVAQYH3deFVWyq9KuI+oFdJkj7++GPKrWjLGjFiBDxDTUM8pVaPcoDxBIC/X375JZyDwHAr/Tc2NhYC0YaFhe3cuTMjI8PtdkNJ6WYtjCErq71ZRdWDF1GLioqysrKOHTt2+PDhCxcuwMJLnePLQC2iV7qspq6d69ata9myJRIr/DWbzU8++aQ3l5EaBEOjkyZNEgShUaNG9Fek+8OHDxuNRrPZbDKZXnrppevXr4ui+Pnnn8PpMuiSBdJrTZRGxf8umMF15cqVPn36UNWczWbr27dvYmJizeazNqMW0avMWSElSdqxYwcENMFDsYBbwQfLm7haI1CUK/v27avX62EmoD9duHDh1Vdf9ff31+v1wcHBly5dkktWXnBMoVByriIw7N/+9rfqLY0KFbJcQrIZGRnR0dGosKKRPYxGY0pKirqcUkQtolcwRqHcCv/iAhlNPVqtNiAgQOaCBtR4AzPkDnwaEREhCMKYMWPo/ffffx8scna7HSK3YuaPHz8eGBhIfV1B0Tx58uRqLYyK/3lgf87Pz+/SpQu1BCBgSCYkJNRsVmstahG9IoBuMjMzo6KioP3Qy1Wr1Tocjjt37iAfUb1qzVrSeTWFJEkGg8FqtW7cuBFu3rhxo1GjRiEhIQaDoWHDhjdv3sTnIfO9evXCXot7CoKDg/fv318zpVLxPwwYiS+//DL1MRdK9hBC/4yKiioqKqpx4aZ2onbRKyUmk8mE/kkwZ+p0urCwsBMnTjDPU+mvNmhgUcVx8+ZNu90eGBh4+vRpWZa/+uoriIpttVo//PBDmcu/JEnUnxf1A35+ftnZ2TVaJhX/o1izZo1er6fbI6noajabjx07VtN5rL2oXfQql0ijs2bNol6f8Nftdi9btkwurRZAYq30g7MqAMaXZcOGDVar1W63p6Sk9OzZMyAgwGAwNGrU6Pbt2/g83bKVnJxss9moRQsQGRlZUyVS8b+MY8eOoZpVo9GA9EqXVrgsU6GIWkSv2E5r1qzx9/enG50er3NZuvVqxdjIGL2Dsg1TbJMcJZ//OMfgiA0aNAgJCREp9P5+fm98847/IEFuPEhOjoa7QagdIZKGD9+vLr4UlFtgFn/+vXrYWFh0BvpZI+jcsGCBfiK2j8VUYvoVZZlURTj4+MjIyN59blOp+N3u+JbcFHju5iYjaoBAQFCiXXV39//ypUrcF9xr0txcbHJZGJEV3hXPVhbRbUBuFUUxb///e90+Qh9Erl1+PDhNOxATee6lqLm6ZW2jSiKUVFR2ITIMlFRUb///jsupWucRmXv+1WQOg8dOgSaVrfbPWrUKLiJPZKP5rVy5UoaFBy7sp+fX1ZWVjWWTMX/Fnj1miiKcXFxvHYO/8bGxtIo9Sq9ekMN0CtoTmnD4JmvL774It1uD3C73e+99x5z3EBtcBKQSk6c5UmzT58+cByWXq8/dOiQLMsYPJAasmRCx/QsWFoDsKFW7cEqqg7UACBJ0meffYabWeh8DxdNmzbNzs6mxmS1c3pDTUqvyDJw8f333zMun3q9Hk52YYLz11ptuiRJ48aNgxlCr9frdLpevXrJ3DFfjOQrSVJiYmJ4eDjqW2mffuGFF2SVXlVUGWAAYgc7duyY1WoVSnuwIIKDg8+fPw9PVnM85fsRNUOvSCtokrp586bL5RLI3gFUC4DKkhFXa9CEJZUA/8XzBR588EGXy2Wz2Zo3+7n5+dwOHbv3s08phiN+Nlnn2XsBlADdrv94MGDstp9VVQZaE/OzMysV68e7Ycw5UNvtFgsR44cUXy9NujraiFqRjlA/wXSiYmJoYIbTJsul2vOnDkytwyvWfcAaphC0Xv06NGQeZfL9cEHH/Tp00er1VosFkY5xVjhgKbv3Lnj5+fHSAq4/TcvL0/lVhVVCgjOUlhY+Oijj9IeiN478Hfjxo3wPBM3S4U31KRyACO0Hjt2zOVyMYIbeDIBhfGm9tqgewWkp6c7nc7AwECz2Vy3bt0bN24UFBT4+Photdp//etfPDPSuQGuN27cCJI7AoV32P6rQkVVQ5KksWPHMlYsGIZwPX/+fNmLIbeoqEiVABRRM/TKRGWNiYlBZkEhzmAw3Llzhz6GAmzNciv9+sqVK8GNTK/Xf/zxx9DJPvroI4fDUadOnaNHjyq+xZi2HnroIer1glvUhNKHa6lQUXVYu3YtGrJ4DBs2DPV4uCCr5YaQ2oCaoVdq2IFDCZk502g0ojMT037Vf/grD1BQdO7cOSgoyGAw+Pv7o0wqSZLD4dBoNB06dFDMuVxa28UonWklOBwO2E2r9mAVVQdRFE+cOAFnLPHOWDqdLjY2FriV78D8HhkVFDVJr7IsZ2VlBQcHM65IcFEb5kbFPIiimJCQAEcNOhyONm3a0Gf27t3r6+sbEBDw9ddfM6kp0uvWrVsxuisVHzQajcvlysrKUvVcKu4K2qO8Ter0X2qevX79ev369RmtFC6nGjdujHu4ZS99WO2c3lAD9EqtPXFxcX5+fozO0Wg0fvPNN3JNz4qMxwlmZvDgweCj6ufnx0iXkiQZjUaNRmM0Gqm/i+JpmvBTdHQ0DfJmMBjQd6JVq1a1YY5RUTvBbFxkOI72HJyhcUcWPlZUVNSjRw/octj3cDAGBgaeP38eP8Qf8larQinVQtSY54AkSQUFBehLj84f1NG1xtsMswHd6Pfff4c4Xi6X65VXXpFLK4IlSUpJSXE4HFardfXq1TTzlKPpMVlJSUng6ksDLAiCAEdwT5o0Cd5SpQMVilC0Q0BvSUtLu3z58uXLl1NTU69cuXLlypW0tLRLly7Bxfnz569cuXLp0qUJEyYwIVxxMGq12q+//jotLS01NRUSgRQuXryIyV6+fBn+zczMrIkKqO2oMdNWUVHRu+++C1ubqM+A2WyePXt2jeSKAWOMeuutt4KDgyGTH3zwgawUOqBhw4ZarVav18NPhYWF/GKNYuDAgYzzNooPTqczNTW1xicYFbUWzPwN57qDiPraa69hj+KjsUCAQYZVYUZnnqf2APo8PAN/ocN///33NVgVtRY1phyQZRnjSELLwWYnk8kk1w77FcDj8Vy4cOHpp5+22+16vb5du3aYMZAdMJO7d+/29fV1uVyff/45jXZB7XgA4FyPx8MEGQDdK4Z9E0sg146qUFE7wWgGpk+fzpAjQ6Y8UfLA1SRoDKg3C2MpMRgM69atUxdYiqgxv9c9e/aEhYUJpc2UPj4+w4YNUww5WP0ABvz2228bNmwoCILD4Vi6dKlUEu6A5zvwdfX19VV8AGVhDD7w008/mc1m7N9MR3/88cflmtY+q6jlYNZG+fn5V69enTZt2ltvvTVt2rQZM2ZMnz79zTfffPPNNydPnox3pk21qRJE8YNi66iGjduPGXKlLfeemvq1KlvvPHGtGnTpk6dCslCajNnzpw8efLMmTOnT5++fv16de73hhqjVwh3xpx6ApGx4AFY7NRU9gBDhw6FgwXdbndaWhr9ieatsLBwypQpFoslODgYzh3ibVmMoay4uLhp06YCOW2bzjROp3PTpk10alF7sApvoNIrXTNJpYMHATwezxdffEEPBqXCrF6vDwwMhDHIT+2MexbzxSos4X2LmqHX7Oxsf39/obTWVavV9u3bVybtWrOcUq9ePavVajQaw8PD8Sazwxr6cVpaGrBwp06dFPeY4U30Ezx37hya9QROyaXT6fBgx2ossYr7FdR3RS7tnMOEE9q9ezc95p3ZKmmxWA4cOECTpTu/5dIdUqXUu6Jq6RUblVnFfP311+DGTBvY6XT+8MMPVMq7a/sxy3Aq7hUWFtLpV5GneOM+fDExMRGmd39//7Vr1zJvMVpUWZYhRm1ERERmZibVxpbhv9KvXz+BmBoYIeLBBx+UOYH33sE0h6J8XbnfpTMN/SK9kMp0nKTBGWjGmPwrKrjvPf88mDwofksxn3x+eNGSiSFXMc1YGV88evQoGJMZNSuuIL/66ivFEpUHfGANuXQHoHcYgYN/gJkVvOWqlssf1Sq9SpIE7NO+fXt+KwGcRyAR5WbZdce3nCzLv/zyy1NPPWUymXx8fMxms8lk6tOnD0T7x2bjW5T247lz5/r6+up0OrPZnJ6eTnUUDCvB/QULFkDMgRkzZjDrKYb3MZ309HTQO9NTCYSSAzh9fX3Xrl1bdq/6U6AmMsXUFOene/k0Okjy7MkPM/yJumcyXy8jG/g8HZZVp7OmJZK40L1MoeiWEMUGZaYZ/uEKNz2tcxh0586dCw0NpRM5czF//vx7tKMqjlmJRGdWTJkOQzrEsPYYCboMX/LahiqkV29dRBRFCChJl8OCIKAnKU2hnAxbVFTk8XhiY2MDAwMZfa4gCFarlScO+FBhYSH94iOPPAKk3K1bN+pUyA9XuHPp0qWQkBDgRLiPwQl5eQrzvHHjRsweE/lNEASz2VxQUFBGqcsJ3sJGuylWiGLUzkoJ0sEnInoJ0CNxAqxYEmJC5ra307HKkDWjr6/c1Wv5KwQrk1k/MX4gisLpvU8MWFeU3K9du1avXj0mPDbVvcLhLveYAcqAPBuiUReyh+ov/ouKkhOAqbRarqCoDnplxsDRo0fdbjddnuh0On9/fzxRSirR+Nz1E9hZExIS/va3v/E2IuxJTqeT8h0zS4uiuG3bNrvdrtVq/f39ly9f7k2UoOwgSVJAQIBOpzMYDIp55inD4/EUFxfbbDbqSEi3yhgMhocffpjW410d1oK2i/5jMkl3MeolSvwUSbDvKwhKjmrUc8K+joVhJlyeftuGYPz3oHUyTCIt+zBHKPYnWQyczBSMK9W+lNg6vDWrVsPPvgg39/wonfv3ljPfHEqgDJWSHQKVOwqcJMG8VBMxNuHahWqSfcKgB45a9YseqIvEI3NZuMN5eURXSVJSk9Pd7vdsJ8KTwNkTmYPCgraunUrZgMusKU3bNgAhiYfH5+UlBTa4/kt/8ikL7/8ssPhCAkJ+fLLL2nG6LG1/IB59913mUUZyq1A7t9++y3l8XtcHjJEhmJ1bm5uampqcnLytWvXYPsDfbEMTUJ5gHKlN+uzrCS7laGqZkShMkYXr2GoLCiyNiN30y15UunAxMxMyeuRIClq0qxw5cukBnJzc3v06MGLHYiWLVv+8ccfZQjUf+q7cumKwmQZKpA4vQozkVB9Gs1VLdnPWU5UOb3CBe3u7dq1Q6EV18jDhg2TyVIdK/2u9ejxeICeevToMXPmTLvdjptJhNJYvHgx8yJcBAYGWiwWk8nUtWtX2q35r9NSbNu2LSIiwmKxvPjii/ikouhHB1Jubi7IyMyhDPivw+HwNozvXt1KwLLk5eVt37593LhxsbGxEL0bK99ut3ft2vXTTz+FsMqKOf9TX2QqEE8ah2pJSEgYO3Zs165dGzZs2KpVq8GDB588eZIOG29kykhYZ8+eXbFixUsvvdS39/+/ftPmTLl5MmTMicpV6AI5QHm6sKFC19++eVrr7321FNPdejQISYmplGjRm3bth00aBB619Ee4vF4rl+/vnXr1q+++mrx4sXLly9fsWLFd999d+HCBSbP90Kv8PfMmTPNmjUTlPSt0OXCwsKuXr3Kv17hNRM/kdMERVE8derUypUr4+LiHn/88YcffjgmJqZx48bt2rUbOXLkrl27xNLbfOHdS5cubdmy5Ysvvli2bNnSpUtXrFixfft2xi5SO1FN9IrzT3FxMbMnD0TOL7/8kpn96FgqI/3Ro0ebTKbg4ODbt2+/8sortA+BpQju6PX6RYsWMZ0mLy8PfgoODgaFAL+Iw2uaPUmS4JDt6OhofAafhCEklyYaeHfIkCGw+4CfADQajV6vf/HFF2kO73ER5PF4srKyPvnkk+7du+MeOQYQLxlqrFmzZniS0r0MM1pqrJacnJx33303MjKSX6WazeZt27bRSubHGN5JT0+fOXMmHG8hkDUQTBjvvfde1XEr1WD89NNPo0aNAqcRZs+oQCwKbdq0uXHjhkxIf/369TR4PH34xRdfFEtb9ipWBHjr22+/xXhJmtLHuMHMihEvKe59Iqc3YeAXFBRs27Zt0KBBuJMIejs2H27J7dOnDyOrzps3z2q1MpZwnU6n1+trye75MlC19MpbHtLS0sB8KRDrk8vlysjI4BcXd23pnJycgIAArVbbu3fv1NTU0NBQ6qVPx3BQUFB8fDy8BYPkzJkzvr6+8MDy5csV9WjetJY2mw2EPhD3ZNK3FG1ZcokiAl0O6ehCgrDb7bm5ubx2uDxSPI+jR48+99xzJpOJWRJiT+U3Smq1WnpW3T0CM19QUPDhhx8ywWuodQUa6I8//oAXvRnck5OThwwZYrFYaP75LZ47d+5UfP0egcbMKVOmYAS/MhSaiIEDB0ILFhUVDRs2zNvDGo0GDaT3otyAb40bN46PICyUDle/fft2+pZ8b3Mq5pz+PXv27NixY7HphZK977x1BNt06tSpkJNbt2498cQTfMQZvNO2bdtariWoctMWM6f997//ReM+1lRQUFDFqmnVqlVWq9Vqtebn5589e5Y66mP6mpJDq+iL6HgbERHBmLMRtKPQCxCUwsPDL1++zCjpFfslpgOba70NS41GM2jQoPKUWrGuqM7xm2++Qde3Mga/Tqez2+0PPPBAs2bNqKNFly5d5NIcV3Zm+DmArjwSEhIeeOABRTYRSrPkmjVrvJU0PT191KhRdHJiaJomGBsbW871Nf2VytpU+4y//vLLLwMHDuRDnyiSF73v4+OTmZl569atzp0786/QO1ADinIGUxD6LyPwpqenx8bGCiR8MCO0QtWh/bYCUFxUMd1g//79PXv2ZIah4CXKAWVbt9tdXFx84cIFGC+MwIRJ6fX6vXv3Viz/1Ybq3rW1fft2FPVxNmvdunUFkpIkqUOHDoIgREZGiqKYmZkJPlK4ZsRWCQwMTElJkUpsC9OmTXM4HEajETaJ3VU2pEbM7t27W63W6Oho2NwiKTkMQILM/bNnz4LWVeC4FRZKkZGRx48fLyMbMOapfMHkXBTF7du3P/TQQ4rESlUlfn5+cXFxe/fuRRJJS0tr164dPnD48GG53KZFWmr6SnZ29vDhw4GPsMXdbnf37t0jIiJ4hhoxYoRcmtpAzfL+++/DIhepze12P/roox07dlRkKzxBsjxg3Bik0spiUCAmJiY++eSTIHZ5i4EC9x977LGFCxceO3YsMzPz9OnTLVu2hCr9+OOPW7ZsyXME/fvWW2/RDCgWwZtUi/f3798PGwhxrwquwWktTZw4sZz14w2MnEtztW/fvrZt29KmYdQ4kD2TyfT000+vXbv21KlT6enpBw4cqFOnDlTj999/X6ZFkaAAACAASURBVLduXaaq6YgWBGHdunXy3bpojaM66JVWweLFi3md45QpUyqmY4IIgdhX2rdvT5OFJjEajSdOnEAtuMvl8vHxCQoKWrlypVxm81CpFq7nzJljsVjq16+/YcMGmfRpRtzg0/R4PMwinXceeOSRR+S7mW4Z/qJKjN9++61bt260L3qLczh79mzwq8XUYJBcvnwZczV79mxvZWG+zgh6OIf9/PPPTZo0oezz5JNPJiQkQAG/++47/Emv18N3n3zySfq54uLiI0eONGnSREMwaNCgY8eOYanffPNNHLS0X+Xn56PepgwwO48ZpQRIgoMGDdKUDhrJCGI6nc5ms02YMIFGpYBjOtevXw8P89pDZhS88847siwXFhbyfp2KLY6g1tQPP/wQK5NXByOee+65e3H8ousVmfiWybJ88uTJ3r17C0qqGyBH+Dc0NHTOnDnXr19nyvXWW2/Bw2azmRdBsPINBsOGDRtA2fJnM1/NqA7TFm2PsWPH4goFjCpms7liQr4kSXq93sfH57vvvkM3joEDBwYGBgYGBrpcLqvV2rRpUxz/SUlJMTExGo3GZrPNnj37z3p4gNdUUFAQBHuly0+ms6LUg9dffvklxB6kIiTl1vDw8IyMjLJ1XowNGjOQlZU1fvx4JCCaPl0eGgyGCRMm5ObmMsNDJpJIvXr14PWhQ4eWRwHHb7sQS3ayoYZUr9e3bNnyxx9/xLdEUVy8eLHAzTHdu3fHLGVlZb388stYEK1W+9xzz126dIn51uDBgymVQPWCGzLNT/kLgr50oijOmzcPjk1jWJWOfIPBMHbs2KysLLlE1qYf/eijj3gmZZreaDTCOp1RaDCTFr9Cog4VOTk5AwYMoHpV/Ap1f9RqtR06dMjNzaUfqhTk5uZOmDABA2wKRL7REKuaw+H44IMP8vLymLLAxfDhw6mUrTg9OByO77//vpYLrYjqVg48++yzTCdzu92//fZbxVITiIYeBoYoiunp6YcPH05MTKS7hpKSkurVq6fRaHx8fODsoHK2EKQZExPj7+8fHBz83//+F+/T8AKy0kiGAXD9+nVwM8AxyQy5gICAd999VyZj+65Zwus9e/ZERUXp9Xpmoc1oJDt37nzq1Cm5tMBLcw73YTWg0+mGDx9e/vqBYoK0WFBQ8Nxzz9HNvjNnzoQTf1FnkpWVBQtYGpVZEITevXtDmtu3bw8ODsaKeuihh/DMXZrtRYsW0Y6ERaYRG8oAs/ig08nJkydbtGhBY0XiNbV3P/7448nJyXLpuVYumQjv3LnTokULZDra7ug7aLVat2zZwjcu45FG6ZVXwpw9e7Zx48beKInK3fXr18/KysJSV0z6Y1YtoigmJCRER0fzVMicfzx06FCQWHmPQ0mScnJyoFdQMIMlIiLiyJEj8OJ9EfOomhyzEH369BFKa4L8/f3pWWl/ChaLRafTwUpB8dMwnk+dOhUYGKjRaKKiooqLi6ncWvZiHPpQ586dfX19jUbjzp07gVKZfk+7O+12cAEGGWaxRv+NiooSy3e6ON0nWlhYGBcXR+2wigtPi8Uyb948ZrhSPzlMPCUlBekD1qq8hYevYfpvenp68+bNkTuioqIOHz5MN+FAgrh+pINfq9WOGDHi9u3baFvXaDR2u33BggWK27E++OADXmCHf6dNm6aYQ8Ui0JqBPXXz5s2zWCy8upA2n8vl+uSTTzARStNQ0uLiYsr+gpIMGxwcnJiYyCfC+zww3Epvrl+/3mw2Qzfw9/enMwGjxHA6nXBwFk/QfxbYK4qKisaNG0enSQ3ZI4NLioiIiN27dytKD0jxw4cPZ8YFLH2wuho1apSWlobjV6713CpXG71icwK90t6m0+nkCtWUJEkPPvigIAjPPfecTPol5SBJkg4fPhwYGOjj49OrVy/6bnmWjaIojhgxwsfHx8/PD92G8CcmBcUEDx06hCsm7G1UoAgPD09PT8dclZ0ZfCwpKalZs2Z03UeXYHi/QYMGv/zyi0wUZJRPGZJ98803MWMHDx4sDzchI3g8nuPHj6PLHezyuHnzJk0ERtf06dPpWh6eh1HUs2dPemRpu3btzp07R8uOGYaA/JTvqJHwxo0bYuntT2XUJ6XsW7duAfXzbIhCq1ar7dKlS2pqKtNkjL5l3759QHlacg4FnVEiIiKSk5PBJOBtDVQGFcKLo0ePhj3ZgiC0bt26d+/eWLeaEqMW/GsymQ4ePIgTP02k7FZWBGQpJSWldevWlMEVj5np27dvdnY2vosTLS3UJ598wrQm1j/YM9u0acPoau9xhqgeVLdy4Omnn6aygE6nczgcFU7tvffe02q14NvP1DX0m3HjxkH4q5iYGJlbxN1VYAQDUWBgIHqG47u0p9Jk6Xg7ceJEeHg45VacjaE7hoSEfPfddzTl8pDa119/jWHlmK5MZ/6BAwfClMCLmbTg8OmbN2+6XC54NzIyUibOCWVnBi62bNmCylZBECZOnKgY4uDTTz/lnTGphKgtOSp4xowZPBfIslxcXDx8+HDQ2gtKcuXEiROZVi4DlFx++eWXevXqlZE3aLIJEybgW4rcJEnSzz//DK4OvEEM/kZHR6emptJ0aNN7C6OO10VFRbdu3erSpQtW5rBhw1auXMmIqwJRuUKkQUzh3gPH7NmzB0I287YEvNbpdEuXLqWF4gVzWZa3bNnCO8PSym/bti0scHljci1HNW0rkEtqZNCgQUy3i4qKqnD6165dA3MTeJLLpet969atbrfbarXOnz+fJxRvpgO4/+6772J4QFRXyeXrl8i/OAkrmkfsdvvo0aOZ/NDewy+CJEmaPHmypvQOHD59nU5Xng0tdF08btw4TATeZSpEIq5mjLS1Zs0anDYMBsPatWsZgoN34+PjfXx8GFrk1+DR0dGHDh1iXoe/ubm5jJ85M7ZjYmJycnKYhmDKojgyN23aBNMDJsvTt9FoBI8RJle0xWVZPnPmDHjRC9zkB92+QYMGFy9eZFqBBy/SIgufPHkyKioK0jQajYsXL/7ll18gCh2jcoE8zJkz5259wWsG8C/Nz0cffcT7BiCbw7Xb7QaTtWJB8N/9+/djnBDF6aFDhw7lUR5KXMTC2oDqUw5AmV9//XWsOKjEli1byvcwHUVGRgqC0KVLF7paB92c3W63Wq30nDVm0zpzgdno2bNnvXr1/P39x44dC2aZ8jQYU4THHnsM1ALakiPhmJHWsWNHJmV0t2TShNoDqxHToXlFm81m++6778qoT+RuTPzo0aMoPLpcrry8PBQVaQbgdapFlWX5vffew5w4nU4a656OpWPHjkGcMIZMAcjO//znP2/fvs2QOIzt9PT0Fi1aUAZkXrdYLCdOnMBMMttqFSsEGnfhwoUC59olCKWEVrfbDVZN2l68hJ6amgr7PplMosdI06ZNQRdE88PvAKaJY+bhE5s2bUI+crvdBw4cyM7OBrOt4ow7YsSICg8ufposLi4ePXq0UJrBBW5Catq0aUpKCi0U9jfqMIfhvXE5QpWtGo3mkUceyc/PL2cm6+1RLytjoCEMukiq1evZs5Qa9Omzb34r+Xn55vNZqvVCpKFLMuiKMbFxTkcjqCgIPSRlL0Ig8yvZ86cEQTBbDY7nc6FCxfCT+U/8wqKKYrismXL3G63psT5TCATO3RE2AqBGeb7BNUgy7L8xx9/4GIQmZo/BhGsJeWPewSsHR0djXaJ1atX08FMc8Wrm8eMGYMk0rBhQwwpCV6feP3𝄫7/B3mVsdDqc4NM+Pj4ffPABLx1DWU6cOAG+BMyyFy80Gs3WrVtFEiUWM485ATKVS+s9ZsyYIXDiPyNcN2nSBJSt/AqDfiItLa1BgwbM7gMN8Zlt3rw5bP7m10CKKxhmzSRJ0syZM7G8rVu3TklJEUXx3//+N50JUOsqCEKPHj2kewtcQPNWXFzMrD4Z8Ryqq0uXLrdu3cLKoXVFnepOnTpFA5NS+QMaukePHnl5ed6mRsWsyrWGWAFVrntlSHbv3r2wikGuYc6nqkDKc+fONZvNFoslLS1NFMXp06eDoR9juPBLElwX483Lly8PHz7c6XRardb69esrDoOyuykNoRQWFsYrBLD/2e12fMVT+jQE/kOiKN64cQP9hOjqj+ncDRo0SElJYcixDAATDRgwAKmqY8eOVGKVleQXuCgqKkIfO2jEGzdu8CNZFMXk5GQ0eTGjCPMfFBT0008/0c/RbUubN2+2Wq3Mghe1dXB/1apVDEMxIbj4QIXFxcWvvfYa5XqG+gEdOnRA7RAzC9Ip8Pbt2w899BDVLKOHP3IrY5yhOWQIiJlcZVnOzc3t27cvdoCnn34awlN8/vnnaMKiE5jBYGjcuDE0SsXGl1x6CikoKPjnP/8JieMXAbRp+vfvD9MY9G1v5H7p0iUwS9CkaDrdunVDg1h5Ms9UZi0h2WqlV1EUU1JSgoKC6PKwTZs28r2pSyRJat68OchBI0aMAEEJjM6MoEozQ71iP/jgg7CwMMjVp59+is3jIYcOlL+N4QhYgbOMA2j0A55P8bt4//r163SfK9IrSlhANO3atQMWKOd2Cfji3LlzMU1fX1+6oBPJblGqpYWqGzBgAB3qKBjKRISXJCklJaVu3bqMkg4voFratGlz5coV2gHorDZ//nxm4UlJBK7nz58vEymS0Sp4k+UnT54sKBmvKMl2794dN2KUoXYvKCho164dI/PSTMbExGRkZPAFhLplAlZQZTf8m5aW9vDDD2Nu33zzTSjjhQsXIHQG45On1+tdLldSUlKlaCFBbn3mmWdox4OYVUJpDB8+nMa0ZLo36r6uXr0KLiLUoYK2RefOne+qE0AwXb24uPjq1avMzoWaQnUrB+7cuYM7x1FNU+FOQKepBg0aQGvpdDrQwYnEm4eRxTweT1FR0a+//tqxY0fIRnh4+Pjx40Viw2XyL5dvFm3VqpW29IZUCpBbeYGCHiFD2SE/Px93+vLkgv37iSeeQNf9u+YQh/GGDRswQa1W++233+ID3tIBKWbgwIEo8I4YMYIPHw7XGRkZkZGRjPUJt/HAnRdeeKGgoIDWOdXhxMXFCaU3ZVENHVzDVn1eJcqwIeVZURTfeustxluWZhKa74knnmB21lLzN846eXl5PXv25B2ShBK+jomJgZiqlEAlct4BM3njggZurlixAkK7CYJgs9kwdrsoih07dlR0dtbpdBgfjqnV8gNfKSwsHDJkCO+3K5R4YkFzjBw5kjnuRfG7t2/fbt68Oa1t2rG1Wm3nzp2hS5QzqBBWVHFxcXFx8ZtvvmkymR566KE/W96qQHXTqyzL1J9Dq9WCG1AFhHmm3pOSknBGDQoKiomJWbBgwaVLl3JycpBns7Ozf/311zVr1jz66KNWq9XX11ev11sslmHDhp04cYKhNrwQS1B2PkGIBgM0I6nhMKMmYyY1Zm0Lq+N//OMflJWYa8AzzzwDYcglpfgy3qpu165dVqsVx8wzzzzDZImRquD+nj17QkNDkd2mTZvGcA0mkpGRUb9+fbprgGExHx8fxqJN2aegoAAEZFyBCqWVIXA9c+ZMhljpPMpI34Dc3Fxc5AqcTQYvHn300aKiIuYMSpnrdYWFhQMHDmRIhzJRo0aNrly5QrPEzPT0mpl0PR7PCy+8gEmFh4cfPHgQS7Rw4UIq/dFJnVast+V5OXHt2rW///3vtCGolwjmbciQIbxeiF5DNnJzc1u3bk1DDDOySPv27anvB60KbznEGsvJycFzGVq0aFHhIlciqk85gCLbf/7zH9qhdTpdBbgVgJLp6tWrQ0NDg4KCZs6cGRwc7HA44GyYgIAAiMwvCILJZPLz84PTsfR6vdvtdrvdH3300Z07d3hBVf7zjL9jxw6TyaQoE2k0mrCwsDNnzuDDzPiXS4sYcAEmWkXxhHZr3jBYds4lSTp48CCeJgnJBgYGgoTFLOhwkED4K8yD0WhcvXo1zS19OD09HXdJKsY9MplMICwzWZVKfCQeeeQRfJiyHlVAz507V7GAihMh3Lx06RJGrlKcAgEdO3bEQc5PgfQa9pjxxkbIYUREBOhbeIObTMiUXzBJknT9+nUIYAjZa926NdA0PJOWlobRimlZdDpd3759mamar41y4gKJCsjXGF4MGDCAmVwVVfZFRUXdu3cvY9HQqlUriN6AmS+n0F1cXJycnIxZtVqtcG5FjaO6txXIsvzZZ59Bz4DKdblcWKeylz6nSH/4765du0JDQ51OZ/fu3eHmH3/8sWjRItjxbbfbIcgLBCEMDAzs1avXJ598QjvrXSEqBS6iXerAgQPUcVIoLWqhby/zoqJYAc9gsCU6XOm1RqMZOXLkXZlU5gbzTz/95Ovry+sHW7Zsee3aNd40VFxc/PHHH+MZzhqNxs/P78CBA3zm4ZWrV682atSIZpVyokajCQ0NBScnRSovLCzs1KkTX4fM0nvevHneiIMZ6vg3MTExODiYjmqkb/q3cePGmZmZtNEVW83j8UyYMIGpQ4HoXoOCgsAA4I16eNEY009KSmrQoAGm/NJLL1HljyiKoAnVlI75LwhCZGRkTk5OGec/SkRDzS/X6J0TJ05AfHq+/un6KTY2FgKwKSo6aBM/+eSTtJ6Z7hETE8Ns8+PBz0OAH3/8EXyNtVothIiqsMRWuagBer1x4waNqO3v7//777/L3lV+PJfJpDecP38+KCjIbrePHDkS5zo8yFqSpIKCgtOnT2dmZubl5fG+hGVD5DYsiqWP9pRlOSMj49ChQxaLhUoQ2BF9fHwaNGhw7do1PjVaFqr7l2U5JSUFDkRgUsOhq9frhw4dyldL2bUnSdKePXvA0xCS6tat27p160AbrtVqrVbrpEmTEhISMjIyUlNT9+/fP2XKFIjNKpRoPLt27YqWKAyjg5+7cuUKWC14Cw+gcePGqampTK7wOjc3F+RWfJ3xkQBCYY5NkzmywMbCX7/77jtvxxxQ3a7L5YIoLYw3Ht8JZ82axUjWlC98fX1hO7LiYojvBpTd9u/fD4HhdTqd2WyGDVe08xw9epQqW6i+6NixY4petJIXFQE/EKSSPSCgxFPkVrxu0qQJlY2w0pgVVVFREWpveUFBEIS6deuC2w+fQ6YsvApi7dq1OFhcLhf1vK5x1AC9SpL00EMPYZsZDIZt27YpsqfMTbly6T3LRUVFNptNr9ePHj36riePKnb0svOpeB8VSXC9d+9ecHFleESn0/n7+4OKvaioSNHHi5+Kgb67devGb78RyBrthRdeoJ4P3vLJVODmzZsxWIkgCL179wYbwtq1a8FTXfGjSEl+fn6LFi1SrEkYThcvXkSdABIWXb3GxsbevHmTyRgVcJiAalTshQsfH5+1a9diKzAVyEjrcgnJzpo1C086wKRwmzy2ncFgAP8wPvaNXNqNZMmSJXwEE0zcbrczQRu89T2eUJYtW4aqBofD8cMPP/BPgtKA7lmAizlz5jAf9fY5qBa+CaAdV61aRQMmMMt51Jn6+/vz/jm0luQSr4OJEydiVvF17BhutxumtHIKPdgoHo/n9ddfx+KHh4ejTuBe1M2ViJqh123btvn5+eEIfPTRR/EnuKByB14zDJWZmQmClclkoi/ysUtkrluXh2ppmoqPeTyeLVu24MzJdPe6dev27t1bUd/PbHCAv3ga9ldffcUkSD1g9Hp9v379mFryBipor1y5kqbZr18/lPFlWT58+HBMTAwlIGrP9fPzGz9+PPiK0+qlLZKcnAw7Nan1g629NNPFxQUKGrTwFY+bdo0PgNUm2m1Wjdv3sy0GpYRtRm0WnJycvr370/rkzeyaUpcBZYtW8bQPV7QIb1u3TqsHLhAZxgwo6MPBm1lZrLntZNFRUXPPfccXebjJjTMksfj29/P6/YEQShVatW1GdZscd6WwLiK0VFRRBml1mK8Y5fer1+27ZtfGo83n77bSarNP8OhwMO6bhrCB74CeXimzdv9ujRA5uyefPm9MjbcopQVY0aoFcAdc9yOBwFBQWMhZfpIny/ASthZGTkjRs3vJkOvAlK+FgZDMW/JZV2Flm0aJHRaKSrYFSEGY3GkSNHYlK0aDi6KGtT8QFIiunW2N07duxIVR9l1DAl8SlTptAuPmzYMD4Stsfj2bx587PPPtuoUaOAgACHw9GgQYP+/fuvW7fujz/+wHrgPd4LCwthBw5VyWlLANUyZMgQSqye0qc0y7IcHx9P61DghGhfX98DBw4wNcZb1WgOjx8/DtI0M/PhJ+g00K9fP96Xi/4Ln9i+fTs1uDFkodVqcbMf9C7+9AG59IQNH71w4QLY3EC+a9u2LfjJMtOYx+NhYnppSjzVMBIxD2ZZTS9oJ7l48SJ6AWLDYUUxcvobb7zBG9BkIkBAD4e46QDGI1MQBJPJtGPHjgqEOT569GhERARmr2/fvrC/q4yNDDWCGqBXKPzy5ctxoRoQEACKKlnJ7Chz/UOSpEGDBun1+piYGOrfpzjYFN3sy7kMURSi4d8WLVrwp9oJJUIWMCAT8E0i9iJG/sLxtmzZMpogs6e2cePGGASLqRNv+c/KykI/JBghkyZNKn+pmU8w0jdcHDlyBA98Frht4xqNZsqUKfg6s3KEr1y7di0wMJBnPYPBANeBgYG//PIL3ddAaxVd2WlWFy5cCI4c0MfQFQErFr2kwTsQA04y0zzN5549ezC8JKTMTCfjx49n6pDPMK8b3bhxo6+vL/JXv379wNOOb5rk5GRavVicuLg42ct0y08SODPRnzZt2kSDvtNjN1FZgYoU2GnJpM8vKb744gs6ATB51mq1K1asYHi5jP3cmPMPP/yQmpFff/11Rs/urSqqHzUmvRYVFVG/ueeff56P8ext1p07d66/v7/D4bhw4YKs1F+RBcoWV6W7uVtTvQR2yps38IhetrSW+AFQXA6ncOGDWMiWjJyCpNh+m9RUVHz5s0xWcY6FBAQAG6zjLzgDZIkXb58GcOgQFJLliyRS+uv5dIzkGLv5OONIb8fPHgQnd6ZRTeMqAULFtCaZKwfkMjAgQN5TSIm5XK5YJnMrGZ43of0s7KynnrqKeQFOG1lzpw5TMYEstrYt2+fzM0rTNkTExPBKsgwBSoK8LQFrB+mB9Iio/HgpZdeorU3ffp0polx0SCKIp5GhdBoNL6+vrdu3aLJUjC9ghFBPB5PYWHhqFGjsP7NZvOqVavA35a3aGk0GpvNdu7cOUmSMLIEP4gkSdq8eTNj8WN6yLhx4/D5ch49cOvWLfAEh6QsFgsNz4bplOeYtepBzehe4WLq1KkY08HpdKalpTGSJj+Bi6IYHx/vdrsdDgeEAsLVuqJeSfbScuWUXrF/Yze6fPmyy+VilF/QYzDAIKNP8JYZXkRKTEzEBOknQDm4a9cuRm1XNnbv3o3yCNigt27detf6oRe0ihQ1hgkJCaB65isE8gy+sYq0hXd+/PFHpibpqA4NDUV/YZ76JaKPg+sff/yxTp06mEJ0dPTx48dFUXzssccU8ykIwssvv8zXHmUrWZZ//fVX2GzN5BDXy40aNYI98t4mddroGKemadOmmFRgYCDE1aRP0vlPluWGDRtSoxD8xb0VZXRpZicYDrTffvutVatW2GQRERFgeY+OjqaeFfSLH330ET/d0iaWJGnfvn14SIeghG7duonEOCl7d1ND/PDDDyEhITj71q9fH8964FeZtUQ/UDPSK1YrPSOoUaNGMpEoFVf6aWlpQUFBcDpeJWaG/5AiunfvTmMMUhVSaGgoxvGTldjKG+iMgrIJEwpLq9W+/fbbTFbLmCFEUZwxYwYVgUNCQsCAULFux0isgF27dtEN78xA0uv14FFE64RWCw4DWLYjMDWtVhsUFAROe/iWzJEs5i0vL2/s2LGUQHv37o3hDV0uF2POgr8hISHoWsREgcHvJiUl1alTh3kXqxfkRzwvjlkKKOoZPB7PrFmzaJzT9u3bX7lyhYk7w7x7/vx5TemTb6DvwekMtE6YmAZ8dcEnIBYSlqtHjx6ZmZmSJN26dYtpDvziww8/zCjf+VX5kSNHbDYbH0ocL8BeQuuKLy9d6uXl5300ktU8u3Tpw9zekjtRE1Kr1CbOJwcDsfFixe9LZxFUaTxCqooV4oaHFEUc3JyYCcYdjgkvjp16rz66quyko7iTwElLGqyh+HUunVrRbO4XCK4QXhTeCYzM7Nr1650bLRp0yY1NbUCu86xLPS7cLF161bQf8ECnFkvm0wmiDnrbb7BMf/zzz8LnLQOGmd/f//Tp0/LnA5HcV45dOgQ+OFDu9hstnnz5uGv2dnZApE06bfAzUviFvJY2KtXr6IikhF+EV988YVcmt2oCRRSRvXryZMn4RAjzM/48eMLCwuxiRUFC1EUP/nkE0pY8PrQoUOxr1LDjjclJpizUlJSOnfujMUxGAxTpkzBVw4cOKDlQiiAQ8j+/ftlJYMbNs3JkyedTif2Xn5K0+l04LWm2CH5xk1ISIiMjMQUTCbTggUL+IFQO1Fj9Iq1k5OTgz6JVquVV+hgq3fo0MFkMvn7++PhVJWYHwSjM83LyxszZgwsgRkSgZmfhpTFBMupeWAUwXXq1KHcDX/NZjNzki6zYKQD6f/+7//cbje1fgwdOhQGtliCP1M3pT6KX1y3bh00GbNKhS8ajUY4u9ebBIcQRRE8IjEFFHnsdjueWYBgTlGTS2x3gwcPpsTXvHnzkydP0u+eOnWKTlp40axZM4YpmCrKyMigu6dQ6SGQ+RX85HgFCO8gmJWVNWnSJLoAgjP+6Osi50+C/44aNYp3SQZ9Av91+i52AGD5OXPmoGlIo9GEhYXt2rULM+nxeL799lsqbyJLPv744zQ15kOgaoDdUwyxIrRa7bRp0+jowHT4UPcZGRkQPx5L/cADD/z888+Ka6naiZpRDtBlhSiKGRkZlFNu377NKGI8Hs/hw4f9/PyMRuPnn39e6fmBpqWGqxGl9wAAD6dJREFUfuiLs2bNCgwMNBgMzKLMx8fHarXu2bMHswcXTJPftQfQZZHH40EbEWUBMEYzqzw8jhRzm52dPWTIEMp0Fotl1apVjKtKxcRqagRbtWoV3UmFdANVZDKZdu7cyYi6ckn4R35c4fZZemC1wWDYu3cvzS3dQ0GlnpUrV7pcLtx1ptVqJ06ciJYNfPLo0aOYOFWbgmpYsU4kSaI7UxUP6dNqtcHBwRg6mpaL2lhEUSwuLt60aRMeZADs069fP4gAi3XLkCPNjFziiUinNKPRmJ+fz7Cw7F10/eGHH5o0aYJ50Ol0AwYMwKNWsLHA4s9oITQazU8//cR0b5ks8A8fPux0OoXS7i6QAk5FTZo0oeysOO/CHLBo0SKn00kba8yYMeC+qVi02omaccxiZITU1NSNGzcGBARoNBqDweB0OunzkiT9/vvvDRo00Gg0ffv2rYopS7HNmjdvDvs7mSWh1WqNjY2ltgI6gTM5v+unkV4lSUIpHoafVqvV6/UQG0ExQaSPjRs3RkREUJEhJiaGd0q/l6qDwr7//vtIhfxZCTabDWiRrgBEblMG/lRQUEA3TSF/LV++XHH7MpUxd+7cCTYZRExMzOHDh+XSgja8e/z4cTraMbewaU0uoTbaLY8dOwabVnQ6Xf/+/YODgxlihdyuWLECK4emQIu8d+9ecDXBinK5XOvWraMVwuzB5ecnWZabNWvG9Mbo6GjeqkNrCbnv9OnTvXv3pr4uTqfzs88+k5TOtYRIlUyN/e1vf5PJ7M7w4+bNm9E5Ly4ujjdRQs5hUxwDVGsANm3ahBGToUvXr19/z549WKVM2EM+wdqDGnPMkkk1Qd/69NNPIfSy1Wq12Wx0Tu7Vq5cgCOHh4XhQe6Vnhvaz2bNnYz+mFgyHwzF48OCCggLetZ4n6Ltmkn/Az88PpCSkLTiPSy5hGQayLP/++++9evWizkwQjiA/P19UiihYsaqD0sFJJHTgUTnFYrEwa0z6UcWNaqmpqUJp3YJGo8Hz0hmXBlw87tu3D+POoZw+e/ZsRkCmrHHu3DlekwgBgBQ1gGvWrMHAks8//3xRUREeo0s1GOHh4YykTEsnSdLRo0chFCwVOV944QWIXQITz13VyngnOjqaCeDSqlUr2hmY9gIkJycPGTLEYDBQaXTAgAE0pBGdEiRJ2rFjB6M81ev1cXFxzMyBmUc7qiAIb7/9NmMZ0+l08GvHjh0ZBTeVUURR3LVr18MPP0zVOD4+PuPHj8foZTRqe4VtCdWJGvMcUNTff/PNN40bN4Ytd1FRUUeOHJFl+ZNPPoEzWtavX49PVuIaAQfGnTt34BxWofTeIZ1OFxoaGhcXB8tAKpcpZkaxx/Og3RTQvXt3Rmp46qmnmIcxw5mZmYMHD2ZOHAkNDY2Pj6cPU+mmYjMTfO6NN94QSiuFKVWZzWbYHc+f7kfFQybltLQ0TUncCRzPv/76q6IFWZblrVu3durUCVQBOAi7det24cIFxtuEOdImPz+ffoIxCsklHdLj8WRnZz/zzDNodJo8eTJkBg+zoHjppZegSpkMFxcX79y5MzY2lmnNFi1aMDENaEUxSzqmsURRxFCKmJOQkBCZNDETIeHUqVPPPPMMWoPhxejo6C1btlBWZfIgl5w4R/uVTqd75513sCnxrcuXL6Md1WAwrF69WhTFnJwcRpGiLR1AklH9FRYWrl+//oEHHqCsKgjCI488cvbsWcWR7ikd2aDWoiZ1r7LSuhUi+5lMJo1GU6dOnfj4ePSJkeUKCl93RXx8fP/+/WGTDxXQLBaL0WgcO3YsHtKnuPqTvatZy0my8BePLMV+Fh4ejso1zMDRo0eff/55PGwKGWr06NGwe1Xmth6UoeoqD6ZOnUrJVCi9c99sNsfHx3uT3yWyV42pE4/HY7fbGYl49+7dTFIXLlyYOXMmmo/x4ZYtW/KOovSCEgHqHHHAt27dmj4miuLq1avREdtoNH722WeYOMx8zEGKQ4YMYUqanJw8Y8aMqJJTsrEdQ0JCVq5c6SGnUTBU5W1GpPVA44tj+mDKp9qYGzduLF26tG3btnRZoNVqHQ7H7NmzqQAol+Z0qijHsGr499lnn8UMg7PUnDlz8LGAgAC6fq9bty7zularpfF5oR5Onz792muvQXgwHHowB2zatImWi2ayjCVjbUNNKgd44DicPXs2+FSCWcliseC5ZrIXZSK9yYhs/JPwoZSUlOHDh4eFhcGWRKoErFOnjs1mW7ZsGVq95Cojd8xtTk5OSEiIUFq/1qZNm6VLl65fv37x4sXDhg2DTfQoXEO2u3XrdurUqUrJDC8mz549m19Zw4VOp/Px8dm+fbtiPd/1E5IkYdxSTDwgIGD69OlfffXV8uXL4+LiQMHKmFnCw8PhRNvyTxsYm5WO+eHDhx87dmzPnj0zZswARoAP1a9f//jx47QsS5YsYdhZEASr1Tp//vwNGzYsWbJk1KhRuEeAism+vr6zZ8/OycmpcOfBuv3000/h69QM6HQ633nnnfXr10N1derUiXqeAWdZrdaxY8feunVLMQ4sU4fwU58+fZhq1+l006ZNO378+I4dO8aMGQNh6eHXdu3apaSkyEQsxTMiaZ8JDg6GnrxgwYIXX3wRA1fS1o+IiFi6dCmqXMp/5nHtRC2iV0bsys/Pf+GFF8CLxel0GgyG6dOnHz16lPG24+kAQGc5OvKzsrLi4+P//e9/QwRupAloY7BgTJ06dW/VR+RV1Jft2LGDrubK8M2Grt++fXuIuoBiRflpjgGzOIVr9LVkcgI1ptVqt2zZwmuiywPI8NmzZ2moXJ6emLLXq1dv+fLlTPxmuUxNHDyQkpKCbvxCic5HUMKwYcP4jQb5+fngRaAhnhJMLFoEkFpQUNA777xz8+ZNJicVALyYk5NDt+Hgd1FBRD0oIA82m238+PEQHUZx66o3LcGePXuE0tM8/Zc6zE6bNo2GXoPXr169CoItzS0jwdBrQRAaNmy4cuXKO3fu0GZFGb/2C6qKqEX0KnKb9OF0TKvVCtscdTpdcHCw2Wz+5z//uXjx4sTERNi5Qc2OMteJb9++feTIkS+//HLQoEFhYWF2ux1YFaUYk8lkt9uDg4PHjx8P1nYafQ4uwG+/0ousqJH85ptvQHIXOKkNO6iPj0/fvn35yMH3qAQAoIxz9uxZq9WKH8Vxi6Ma9mUBeC0kA0ZTgRebNm3CvUOo+Ka2ILju3Lnz119/jTZrinLKOLNmzYLFEB321FjUrFmzhIQET+mj0fE6MTERVAfaksP7MIf0jEWdTte6devPPvuM6gcrpfOIopiYmAgbnWn9IHTkCPFGjRotXrwY1nxUc8VcY8r8v/SYLxr+FdGlSxeMBcGoj8FORbeECUqKe51OZzAYunfvvn37dnRik0sc2sruTvcFahG9ApAo8/PzLRaLj4/Pe++99/PPP0+fPl2r1YaGhkKII71e73Q6HQ6HTqcLDw+PiYl5+OGHmzdv/sgjj3Tq1KlZs2Z16tSx2+0Gg8Hf39/lcjFn6vn6+rrd7tDQ0MGDB+/YsQN6oeKgYvJWue3tjXFSU1Nfe+019HTBMePn5/fEE08sXboU9xRSzSaeL1+xzPCyP66IGbEFCHfNmjV/9hOM6QbvHD58uG3btszohSZr3Ljx1KlTIewAv6QtT2Gpqnfq1KlMpEcoTuvWrdevX0+JVdGgf/HiRQgWI5TWzwABtW7devbs2RghgclhhfVL8ArOeUlJSWgCFYhgCCVq2rTp1KlTf/75Z5mz71ERRC7NswiaZ4/HM3ToUIbEYUJ69NFHYTcE/y5N+cSJEx06dKDZQ4B347x58+gWIbrVjSZ7/5JsLaJXWrmSJPXr108QhNDQ0MuXL+PWmjNnzqxbtw6i5thstsDAQNAbCCR+FTpUgYNXQEBAYGCg1Wo1Go1hYWG9e/desmTJ0aNHwTlGKn0eMq9SoH2UPzTw3ssrk95P/4Vfk5KSduzYsXXr1n379oF6S+ZkDZnrkYojpzzgLQkJCQmfffbZggULli5dOm/evIULF65Zs2bbtm38SWWM7Z4HHeSy0hIhMTFxwYIFY8aMefXVV6dPn7527dpLly7J3DYhmZuN7gqaz7Nnz06ePLlnz56xsbH/+te/3n///V9//VUuXf/UtM1nOy0tbfny5RMmTBg5cuSkSZM+/PDD3bt3Z2dn4zOSkvZfvod24cXzc+fOLVmyZPz48SNGjJgwYcK8efO+//57UAJgZ69SlTyPua7EN7BLx45cmTs2LE9e/bs2rXroEGDlixZgv0QK4p6AfEOy6dOnVq2bNkrr7wyatSo119/ffHixQkJCbm5ufhpPEuUZhLd8qrU7FHVqEX0KpN9hJmZmaGhoQaDYciQIUzN4lKroKAgKSlp165dW7ZsWbRo0dtvvz1x4sQ33nhj2rRp77777vLly9evXx8fH3/8+PErV66AHyhNhxlC/JyJ14rrqcoCwxr0W6jgh+zxnpWwUqZZusfsMUOOMqCiIpuXRssAVjX9CrUc4mP4AP9RSWmvetkkiyxAxVg+SzIXlZXfU0/fwv7DjH9Fn2i+usoPfIsnWYb6mflALr1aZ97ir5l/FVXbuGzneZBPlmk+2cuaAD/HdyE+hfsLtYheaVVOmTLFYDC43e4ff/yRkS4VX0HQNvM2Dpn7VOiQvWjKqqh1aVaZ3kmzxJRILB1kXvFvBYDkoqh8lLz4+VK+U1QlU+AQ8nZUDy0XM7y9zbLlBEPoUumNUpTCvM2sCD4zfHPwhoR7bB1MhGkFvjMzhZK8bwljwOeZYXZ+FmSmFjonSZxVCscXnQ+o6CATTqdbs+6LHQSKqEX0KpOOGxYWBvoavo/SGZv2fnqtuJBkOrqs1I2Y9JnsVboOiBc6sL8yecOpBUmQBjllHr6XMVzGupvPLb35pyqHVjJf+fw2TfqKokh71xKVkT1GhmVe8aZ4UZxvmIcra54uo+vSLCnKeoyugH9LLrO3Mz8xH/L2UX5Fzwu5KCvwGeOzcZ+idtGrLMuiKObl5YEj6n/+85+azo6K6oDiGPZGJfy7ivf5V3DM37/SkIr7C7WIXnGaWrFiha+vr5+fX2W5yquozWBo1NsWL4aCGRVnOaXC+12Xp+L+Qi2iV7kk7ty//vUvQRCcTic1L6r4C4OqffFmGatXfL6ch4zSlKlSRYWKKkUtolf07GnRooVWqw0ICJDVYfC/BPQboeYRRsOuqBUt26TGOwDc1+o8FfcRahG9yiUDADz/27Vrd1erhYq/AFAbwBuRynb8ErnA/mWAmlbUTqWielC76BWGE+wSef7551Up438Eii7J9FfeUYFatMojvfLmdRUqqhr/D/FDJGyKhmhNAAAAAElFTkSuQmCC" />A Sonata in music, literally means a piece played as opposed to a cantata, a piece sung. The term, being vague, evolved through the history of music, designating a variety of forms until the Classical era, when it took on increasing importance, and by the early 19th century came to represent a principle of composing large scale works. It was applied to most instrumental genres and regarded—alongside the fugue—as one of two fundamental methods of organizing, interpreting and analyzing concert music. Though the musical style of sonatas has changed since the Classical era, most 20th- and 21st-century sonatas still maintain the same structure.

Sonata form (also sonata-allegro form or first movement form) is a large-scale musical structure used widely since the middle of the 18th century (the early Classical period).

While it is typically used in the first movement of multi-movement pieces, it is sometimes used in subsequent movements as well—particularly the final movement. The teaching of sonata form in music theory rests on a standard definition and a series of hypotheses about the underlying reasons for the durability and variety of the form—a definition that arose in the second quarter of the 19th century. There is little disagreement that on the largest level, the form consists of three main sections: an exposition, a development, and a recapitulation; however, beneath this, sonata form is difficult to pin down in a single model.

The standard definition focuses on the thematic and harmonic organization of tonal materials that are presented in an exposition, elaborated and contrasted in a development and then resolved harmonically and thematically in a recapitulation. In addition, the standard definition recognizes that an introduction and a coda may be present. Each of the sections is often further divided or characterized by the particular means by which it accomplishes its function in the form.

Since its establishment, the sonata form became the most common form in the first movement of works entitled “sonata“, as well as other long works of classical music, including the symphony, concerto, string quartet, and so on. Accordingly, there is a large body of theory on what unifies and distinguishes practice in the sonata form, both within eras and between eras. Even works that do not adhere to the standard description of a sonata form often present analogous structures or can be analyzed as elaborations or expansions of the standard description of sonata form.

 See also:





wikipedia3
error: Content is protected !! Contact maestro68blog@gmail.com if you wish to download this content
%d bloggers like this: