Musical Form: Classical & Romantic Eras: Viola Sonata

♭1HKxMveCbabG+6l/wBFzSNQQsjDqsyb2saNB7nu/daOVoWvF+UXM+gwbQfgocpHEOtCy3eUjLhkduIgD9q9uD0jL/SYmT9kc7V1FwJDT/JcEMdFrGr86kN8tx/gpnHY7luvcpDDq8PlKj90/vkfQFn+6RJ1hH6EhQ6f0er+ezH2H92tsfiSpA/V9n0ce64/ynx+QIjMSodh9yIKGjiAmHL3lM/WvyXjlY/uwH0v80Dsnpp/m+mNjxJcmOT00j39LaNPzXOCtigFMccIe6P63+MV33Yf1f8AEDTjoNhh9F+P5teHfgYTnomNka9OzW2O7VXD03/fwrLsYEQQq1mEyZb7T4hPjm7SkPPVjnygP6MT/d9Jc/KwMvDfsyq3VO7TwfgeCgbD4rcpz8zFb6OQ0ZeIdHV2e4R/BQu6VjZtbsjpBPqATZhvPuEf6M91NHKP0vtGzUyctKOsda6HdxtnmlsPikXEEgiCDBB50Tb1K1V9p8U+zzTb029JTLZ5ptnmm3pb0lMtnmm2eabelvSUvs80tnmm3pb0lL7PNLZ5pt6XqJKX2eaWzzTbylvSUvs80tnmm9QpeoUlL7PNLZ5qO8pb0lMtvmlt81HelvKSmWzzS2eajvKW8pKZbPNLZ5qO8pb0lMtqW1R3lLcUlMtiW1R3FNuKSmWwJbQo7k+4pKX2hLaE24ptySmW0JbQo7iluKSmUBJR3JJKdsFTa8hDSVCneBbDbAph0qqCph5CFLmefjuyccen/PVHczz8Qq+L1kNArymmRoXjn5hWmWazKjkYWNly536Oz99vf4hTQnGuGezWy4piXuYjUjuDsWzVk41omt4cPjqpl1fisO3o2XX7qiLR4tMH7ig7+o4+h9RsdnCQj7QPyyB82P7zOP8AO4pDxi9Aa63dwg2YFT+W/csdvVMkOG7a4DkcSrNXWWj6bXN+BlA48g2F+S+PM4JaE8P94NkYOTju34lzqz5GErLsuNuZi15Te7i0bv8AOGqJT1KmzRtgJ8HaFWfW0naPiEwyIPqH12P2swxxmPRKx4Gx9jlPZ0Wz6VF2M7xY6R9z5Qz0/pbh7M1zT4Pr/uK2S6l302z8QonHw381t+5OGb+tL8/zYpcoDvCH2Efk456XhjX7fXH9Q/3phh9MrMvyH3fyWN2z8zK1zgYTuGBOMHGbwwI+8f3pfgtHJxB+SP1JLmm4ur9DDq9Ck/SPLnf1nclFpqDGw0T5rRGOyNAE7aRPCjM70Gn5tiGMR/lo1G1vPZFbSSrIqA4UwxRllCBtAU/RCOGhS2hMKbavowUxYR5q1tB7fJM5jY4TUgtSD2TFsoj2gcKB+KIKiEFlXkqTmWUWC+glljdQQtEmO6BY2dVLCZDHOAkNftWtxaeu0utoAr6rWJfWNBeBzA/f/KueLSCQRBGhB5kLXebce1uTQS2ysh0jyU+s0Ny62dXxmQ2725LG/m2/vf2lbxzFAdDt/By+ZwEEzG4+YftDiwmhE9N/7p+5L03/ALp+5TNNhCUKfpv/AHT9yXpv/dP3FJTCEoU/Tf8Aun7kvTf+6fuSUwhNCJ6/wB0/cl6dn7p+5JSOEoRPTs/dP3FN6/AN0/cUlMYShS9N/7p+4pem/90/cUlMIShT9N/wC6fuS9N/7p+5JTCEoU/Tf+6fuKXpv/AHSkphCUKfpv/dP3Jem/90/ckphCUKfpv/dP3Jem/wDdP3JKYJQp+nZ+6fuS9Kz90/ckpgkp+lZ+6fuS9Oz90/ckpgkp+lZ+4fuS9K39w/ckphCSn6Vv7p+5N6Nv7p+5JTFJS9G390/cl6Nv7p+5JTFJS9Gz90/cl6Nn7p+5JTFJS9Kz90/ckkp2AfinjTdGnEoePfiln6e1wt/MYxuh+JU32M9rS5wAGgjx1JUBxRo1f12PmpmYB4aPZdKVKoY7/p2lg7HbKL6OJ2yPvYVCRrTdGQUhBRWWJ/Rxv8AuQP8wpxRR/3IH+aUKX8Y/kErbPNWGttdUbthdUDtc4jST2VMVVDjIb9xXWdCxqbOh202ney4umwD2+R+SIiSx5cohG99Q819nxXt2mpu3wLUKzpWA/8AwW0+LTtV27Ayse11Zbv2kiW6z8UEl7PpNc2PEJcUx1ku4cUhtAj6Obb0KrmqxzT2DhI+8IG3P6edxPq0d41H+xbPrafBUR1nDdvDgQB2I0cpIynLQjjDDPHhgQYy9mfSjp9jZoyKbqw+NHdwjH0OxIVTpja3VPsDNlb3EsYew7q4GVqGcKkQG1iy8UIk7kfRjAGrTKRMjzRA1icbR2TOEr+MI27ijNB7lRLwE3qJUgm0+icQgeol6gQIU2JCUqsbgom5NTTbL2/BRc8eKpmxx7peo4puq7hTOJ7aobp8ExeU25KlyzvghkDwRHEkIZJ7FPCwoLax8u6fpdorvswLTFGUIH8lx4Kk8k8qjlS3ba3RzDIKmhZHD328+jBmiK4q238urWvyMrHufRYffW4tdp4If26/x/BX+tY5yLKc2oaZLAXf126FZv2S/wAB96uQlxRB7hxssODJKPY6eXRJ9uu/eH3Jvt9/734KH2S/wH3pfZL/AAH3pzHqkGdf+9+Cf7ff+8PuQvsl/gPvS+yX+A+9JWqX7ff+8PuTfb8j978EP7Jf4fil9lv/AHfxSVqk+3ZH70fJL7fkfvD7kP7Jf4fil9kv8B96StUn7QyP3h9yX7Qyf3h9yH9kv8B96X2S/wAB96StUn7QyP3h9yX7Qyf3h9yH9kv8B96X2S/wH3pK1SftDJ/eH3JftDI/eA+SH9kv8B96X2S/wH3pK1S/tC/98f5qX7QyP3h9yF9ku8B96X2S7wH3oq1SftDI/eH3JftDI/eH3If2W7wH3pvst3gPvSVqk+35H734J/t1/wC/+CF9lu8B96X2W7wH3pK1S/br/wB/8E327I/f/BD+y3eA+9L7Ld4D70lapPtuR+9+CX2zI/eP3K7Rm301tr+y0Pj857QXH4lP+0Lx/wBpKP8ANCbcu34rqHc/Y0PtmR+9+CX2vI/eP3K8M++SfslBnxaE/wC0LhMYlAnttSuXb8U1HufsaH2rI/eP3JfbMgfnkfJXjn3EknFo/wA1Vco25Lw41MrgRDNAkCeor6oIHQ/gw+23/wCk/BL7Zd/pD9yH9mt8B967Nb4D705ak+2Xf6Q/ckofZrfAfekkputbiisOF+6w/mBh0+cqZYwkD1QD3kEIX2PJa1jjWQH6giCPvBUrGWb92xwbprB7Jh2/eZ8Pz/u6NiukvcGtsZr3JgfkRTiZAO2A7+q4EKnMaH8U4I5Vch0Ik97bZoyW/Srd+X8hSDbe7HfcVXFjxw8j5lEGRc3i133lNoLwT4My+B7gR8QV3vRKo6HjtHcBx++SuAGbl8Cwn4gH+C9Aoe/G6P68mGUF+sfS+CdEANfmJEgDxeS6xcLepZFjTEvMEc6aKqzNzKxDbnR4E7h9xT2ZdT3F1tDS5xlzmktMn4yo7sB3IsrPlDh/BM67toUIgGOwSt6jdP6Suuz4tA/6mFXFHSS/dZiEd4reY+525S9PGd9DIA/rtI/JKl9ksP0H12f1Xj8joKcDIbFbKGKVcUdu+jYbZgaBlj6gNIc0OA/zYRPTa7+byKn+RJafxCpHGyQJ9J0eIG4f9GUF3t0cCD5iPypv0XCukvyLsV4OU9m4R8AQfyKD8bKZzWfks+q/a32Og+AMK1V1LIZxY75mfyqf2YkDo0jzeQSI0kL7LOc5v0mkfJQ9dvdWh1V/wDhA1/jIUvtuHb/ADmO3Xnaf9iacHY/ayR5796H2Fom8HhMbSSr5q6U/jdWf9fCUh03Es/msgT4E/8AkoTDgn4FmjzuLqJR+jQ3FKSrr+kZA1rIePLX8koD8LJr+kxRnFMbhmjzOI7SCIEp9xCTq7m/SY4fIoZdCbw9wyCYOxtLuT7kHeluQ4U2kLlBz1EvlRJRpSi4INwDmkeIUyFFydHQsc9QV6nGzpIaTP2ezQeTlXlExB+hy2DgCR8ihK3j/SH983J5keqJ7wH4aLpJklI110kydJSkkkklKSSSSUpJJJJSkkkySl0kySSlJJnODQXHgKddVz6/WLIq8ZE/ckpimVs4bH4bsui0PbWQLazo9u7vHcKr/rCSlkktBykkpSZJJJSkySSSFJSkkkpSSZJJSkkkklK7pJu6SSmAbc0tlrmj5xCKLbQ7Rx8goNc9mtby2OADCM3ItdrZDv6wBTZkVuy4BLiOls2ZNzTIMnzAKk7INh3PrZPkNqGXsPLQPgnHpHuW/iofFug/wBUhkH0nmr7nJRjn99v3FLYyNHg/gl6VkaCfgUF+ndnXVS6xoFhkkaFvmu66k9zfq88AFgfU1gJ4k6LhMZs5NTSIlw5+K7nrmvSLaT9GmpjiB+9KQ2LFk+aOvV4x1Fp+jtd/VcChupvHNbvuUHO1TC17TLXFvwKZTauXgoy36Qj4ppRRmX/AOkJ+Ov5Uvtbj9Out/xYAfvCNBaZHsxZc9n0XkHyKIOoZbeLSf60FDN9DvpUAf1XEKJdhntYzz0cnCKyUtDYU7qBc4+pTU/z27T+CQzMT8+hzfE1vP5Cqm2gk7bon95pT/Z5Psurcf60flVgBzDIt5l2E7/DWV/12hwH+apj0if0eXU7+tLP+qhUPsOXEtZvHi0gqBqvYffW5p8CCkq3X9HL2ywNtHjW9r/yFQ3ZNer63t/rNKyS8jkQUarNya/5u17R4NcQkm3UZnWNOhIjzVhnWchnFh+eqyR1PKH844WR++0O/KEv2hW/+cxqyfFm5h/6JCSrdxvWS6N7GO+UIn7QwbBFlPxgz+VYjMnAcILLaz4tcHD/AKSf1MU6NvLR/LZ/EJJEq2NOzt6TZydh8wR/1Mpj0vEs/mbwJ7bh/FZIYXfzd1T/AIOj8qn6WcwfzbnDxaQU044HcBkHMZY7Tl9rfs6LeNWPn4gx94VZ/Tc1vDQ7+qQq7czKpPLmH4EK1X13LGjrN3k+HflTfZh5Mg53KNyJeYar669H1uHxCC8nvotdnXZ/nKWHzbLf+pRf2h0y5v6akgnuIcP+kEPY7Ff9+J+aP2FwsN/9KH7zCggjxXQijolu/Y8Vl4LXSCwwfMFAd9WsS0fq2RJ7APDvwKfGJiT4tfLkE+Gv0bcWR4pSFfu+rOdWfbYCP5TSPyKnZ0fqLJ/Rh0d2lPYmEjxSkeKFZj5dX85U9o8YQtzhzp8UFNuR4ppVXc7xS3OSU2tyUqrud4pbneKVqbcppVXc7xS3O8UUNqQlIVTe7xT73eKSm1ISkKrvd4qdld1bWuf9F+rSDKSl7zJa0fEpw+wDbJjwQmvhwc4SFYN9Z4afyIJWpc9tpIJ9whw8QmssIO1upUXZbWzA1RunVDJ3SfeDwkrTZJh9QsxXBwx6bh3ba3cCp5mVh5T/Vx8b7G4/TqaS6ufFsox6e4dkO/BfXS+wiIbMpWnhakhKVV3lLe7xSWtqUpVXe7xS3u8UlU2ZSlVt7vFLe7xRU2ZSlVt7vFNud4pKbMhKVW3O8Ut58UlNjRJV9x8UkkNznlOEoSIVa3VEQF4CUDsmCdBK8JRCaUpHikps4DBdm0seS4bhoT4LrvrJmY+Ph2UVPa62zY0t3boaPJcQHEagwexGiUkuLiZceSdSj0WGAMgWwbG92NI+Y/iol1B5rI+Dv75UNyYuTRbKaSfqx/fb9xTFlB4tg/ymx/Eqo7LDXlu2QOSjteHtDm8FOII1IYozjIkCWoZeiD9G1h+ZCg+iwNJEHTkEJzCHawvZtaNUYnUIygiEj4IPs94/Md8tfyKBa9vLSPkUT0rm8Ej4FPuyh+c78qnc6j2KAHaZ4P3FGZlZDR7bXj+0VIX5I0MOH8poKRun6VNZ+AI/iipkOoZQ+k4PHg9rXflCQzQTL6KnfAFv/UkKIfR+dT/AJriP4FL9VPZ7fuP9ySknr4/pY5/Uf/wCSDk4/ZzvzrayfEB4/Dah+liHi5zf6zNP+iSmOOz8y5hHnuH5QkpN6WKdGZLf7bS38m5P9kefoWVP/AKr9f+kAg/Y7T9FzHDye38hMqLsTIaNaifgJ/Ikq05wsuNKi4fySHfkKHtyKTO19Z+Dmoe26vs9n+c1SGZlM4uePImf+qlJVpWdRzKzpe4eTju/B0ov7Uvd/OV1WjuSwA/ezahDqWVEO2WD+WwH8kJfbKXfTxaif5O5n96Sk4zsN/wDOYgafGt7m/wDVblMW9Md+ffSfg2wf98VU3YDuaLGHxa+fwICdrenuH89bX/WYHf8AUuSU2hVjuMVZrP8ArjXMP4bkT7JliDU+q3+pYPyO2ql9mod/NZVTvJwe38rUv2dkO1rNdn9Sxk/duBSU6TburY4+hcweLZI/6BKkOu5jfbY4OjtawflcJWaK+q0cNvYP5JcR+EqX7T6jUIfYT/JtYD/1QSVbr1ddqc2LKGH+oS3+JCIMzpF4i6hzfOGWfwaViftQWfz2Lj2eJDSw/wDRKkMrpx+ljWVHxrtkfc5oSVbqOwOhXH2vY2f3g6v+LkN/1Zps1x7d08bXtd+XaVSaenO4ybaj4WVhw+9rj+RTbTJ/QZlDz5l1Z/6QCSrXu+rObXq0yP5TSPxEqnZ0bPZ+YH/1XD+MLSYzrlOtJdY3/grW2fgHFE/bHV6hGRS5w7+rV/EAJUlwbMTLq/nKHt89pI/BBJA0Onx0XSM+sNExbjtHiGOLfwIcijqPRsj+da6uexaywf8AfSlSHlZHilIXUOwfq/kfQfTJ/r1H8hCg/wCq2LYJoc7/AK3Yy38JBSpTy7zJAGqTZBlbd/1Wur1bcWnsLa3M/EAhVX9F6g3QNZaPFjhP3EhJGrRkcKzTjb+D9EEn5INmHl0n9LS9oadXFpj7+FZx3xRc89mEffogV0dTq5x5KlXZZW4OrcWuHcKJCdglwRWOtj9W6gGE72u2/vDVQyuuZmVSaX7Qw8loglDa1rcS15GsafNUEAvJIpnISkIadKlts5CUhQSSpVs5CUhQSRVbOQlIUEklWzkJSFBJJVs5CSGkkq3TTQpaplVdZbhR3Jz49lXde4mKx80+MbY8mQQ369E+qUFVS292pJ+9N6VqdwDuwnPLpCTb157JxIVLZZ4Ep2m4cF33pcA7q+8HrAtySlJVUW3juU4tyO35AhweIXfeR+7JMamk7iB8U+OIDmt1aDogiu6z6boardbAxoDdISkaFXa7GOKYkIcAHU7lRUSiwokKIFnMUcJQVPaltTrW8DCClHkibUtqXF4oOMdkW3yTbGnsilqYNR4z3WnDH90ItjfBP6TT3RNuqcAo+4e608vD91AaR4pvTI4cR81YLVHaj7hWHlo+LBtmSwey1wHeCl6+T3cHfEAqe1QLSiMi08sOhKvWJ+nTU7+yB+RMXUHU44H9VxCUJoKdxrDyx7r/AKmRqyxp8iCPxTCvFP8AhHt83Nn/AKlKFFxggeKIkCtOCQ6hn9mqcJZks+DgWn8U32Syfa+t3wsb/etPG6ZiXY3rWX11u3Q4OdG2eJULun9Nrmc2sx+6d38EPcj4/YtOMjrH7WmMbqNerG2f2ST+ROczqVY2ufYI7O/2qf2bBB/R5jR8WkIrMYuH6PqNQA7F7mo8Q/kFvCf5FrDqNsxbVVZ/XrCc5eI76WGwebHOZ+REtdkVAg5NVoHgQ+fvCEL55ZU7y2Af9TCNhC/q9OI1rurP8lwcP+knazp7uMlzD/wlZI/6Kjvod9LGb/Zc4f8Afk0Yp5rsb8HNP5QihL9lZzTmUuPb3Gs/9KFZqHWqx+r2ucPCuwP/ACKj6OE7i2xn9Zm7/qYUTjVTLchnluBaUlN9+b1ms/rNO8d/WqDvxUD1DEd/PYNW7uWbqz+CAxmbWP0WSI7bLSEQX9YAgk2Dwdts/wCqlJTIW9Gf9Kq+o+LHNeP+lqiMp6a7+az30nt6jHD8WIByb2n9PhVv8Zq2n764UTk4Lvp4Ww+Ndj2/g4lJTpVjqNf9E6ox/gBaAfuej/aPrJWJtqbks7l1YsH+c1YoPSn6F19X+a8fkCk2nEb7sfqBrPg9jmfi0pJdT9tPay1tuMMd0guNcgGB+65N+36Xe14Y6t3axgIIWe92Y2oj7W3JBGgDy+PiHqu9xbTFuK2f3gCP+oKZOAlVkiuxZsWWUAaESOvELdl9vRcoAHEok8+nNZ/BBPRemW++p1tHkYe3+9YQNbnaBzfKZ/LqptybazFdpEdpIUZxZP0ckvqyDPhPz4IecdHXyulvGI6vHeL3kj2j2mB5FYllNlTiyxjmOHIIgq4zquSzV3u8z/erDeqY142ZLfm7VISzR+aImO8d0yhyuT5ZyxS7T2+1ydh/dKNi10m9v2hrjUD72t0cQtK/GxK6ftOLke8Ebau+vcFRZdkOgv22f12g/iictjTTz0KIcsBLU3XbUN6npXTsnIDun47bqXATj2PItnuRKy+sYNeNnPqx63VsAB9NxktJ5ErUrfi12gXM9JzYh9LiR8t0rUs+z52Lsry22XD6Js9r/vUQyzjKzxSGzYyYMcoVHhgehovEml3gm2HwW9mYOTiujLsawkSC4iD8wFXbUw8X1f5w/uUwy3rTQOIDQlyfTceAka3jkLerxchwmu6sj+u1DtosaYsvqB/rBL3PBXtDu4mx3gnFbjwFr+iBp61ZJ8HD+5WKcHIs/m7GOjmHDhI5PBXtDu4HpP8A3Ulu/Zbt8esz/OCSXu+Cva8WmmKkVAlQh1CivPs8OxUQGsHYDxRHgObB76Ko9r2+10kDjwU0RYq6auaRhLi4eKxp4NoQRI48UoQsYEAzweFY0TZCjTJjlxREjox2hLYE3qNmGjcfJEZVk2fQrJ84Q16mk8Uenq8gw2jwUg0BFGFndwG/FOMDKP57B8XAfxQsfvBN/wBU/giGilKJ+zs381zXfAhM7C6k3U0lwHcBDT94J4/6smAKeUN7rqz+krLUm2sdpMHwKXCUicdrrz0ZpBNKkEF7IJ0wUgmlcAtCYhEgKJalaqYEJKYaUxaUrVwsUtFKClCNo4WJATFoKJGiaErRwoS0JtgRS2NVFOtaYhGWhDazdbHZgkn4IzjtBceyE6asRzo995gf1e6fH89GHLQHl6i1HXWFziDoTMKO93ikQfBNqp6Dmkndfe/xS9R/imh3gkQ7wSUrc5Pvf4poKUO8ElMvVs8U3qP8Uod4JtfBJTL1rf3in+0W+P4BQ1S1SUz+0P8AAH5J25DhrtAPlI/Ih6+CbVFTaZ1C5vDnt+DypjqVndxPxDXfwVJJJTf+3td9NrHfFgH/AFMIjbKXCTjsfPdpc3+JWbqnDnt+iSEEgjr+DqU4+NbLXMcG+AcOfuR2YGPID7bqR2iD/cshmVczg/eiNz8ovHv78dlHKOS7BAbGOeACpwMvF0n9Krma8pr/ACsZtP4Sqzui5g1a1j/6r4/6pFszrWidHRzIQm9Xe4e8NHyTR739UshHKH9+CK/EzAA11D/b3A3f9SqtlZYRIIJ7EQtSnqDy0uA0+JCr5WY28w4CR4oxlkujHTwW5MeEgmOWz2IQ1n3AdoWliy97WBhcT2Cz6mAmWGfFX8fY10vsDSPA6/gmZaZeXBAboGBMWb2HuIBVuijorom14/rCPyKow9MketY8nvAVpuT0Kn6QfH7zhoq8gToBL6NoEAaypuPxMeyn06r22sGvpPgiP7X8Fw2RDb7A1u0BxAb4arq8jrPQg2GS46gFo8VyLzL3HmSTJU3KRmOLiEhtXE0udnCQhwmMjZ2WLp8EpTJ/krbSUHHyUmXWVkljtpIgkaaKCdBStx57pJJIqdZwUS3wRYBSIHZUgXapFscouqjlFJdwFEt7lOBWmPdEdrBKeune31b3enSOB3KZjRZb7/5uvUqvlZLrXTw38xvgFJEE6D6lr5ZiIs/Qd/FsP6hTV7cWkCPz3alV7OoZln0rXAeA0CrJKUQiOl+bTlmyS60Ow0DI2WO5cT8SoyfFJJOY7Pdfc7sSiMy8qv6Fr2/BxQkkKCQSNi3mdZ6g3R1nqt8LAHflRhl4OX7bqxj2nixn0PmOyy0k044nYcJ7x0ZI5pjrxDtLV0Xtsx3+nZq3lruRHkVNpUcdzsjAsrcNz8eHNPcNKVZloKikN73GjewysCtpCx4eCUSithDaWogjsoS2gzAT7UwUwmFeGIaUi1T4ToWqkW0pbR3REtO8pWqmG1qiWBEIBUSxEFBCPaFEiEQtPZAucWjT6R0aE+OqyVAWWBrORa2lnHLz4AKtmW+pbtr1rr9jPl3Vq9xwcctJ/Wbx7vFrVn19wrGMdemw/i53M5NeDqdZfsDGHeCWvgiQlCkatI9fBLXwKJCUJJpHr4J9fAqcJJKph7vApoPgipJWqkWvglr4IsFKErVwotfBNDvBGhI8JWjhY0Y2Rkv2Y9brX87WiShursY4te0tcOQRBCNh5eTgZLMnHea7ayCD/etHrHVx1eyvJsqbTlRF2wQ1/wDK+KKA48O8EjI5R5hQc8fFK/BNDuiU6RNrR5qCNjscXyNI4JSQN093828+SpLRyK3NwgXNMl30tI/BZyQ2XSbdPto+KruPuKKHuDA3sgHVxQCCdAya9w+iSFfxD6kWXRsGhjQws9sgqwyxzODoeQhMWGTFPhNnUdm651TCSQ4kawdJ+5UcjMdfoGBjfASfyojsmxzS0kEHyCFomxgBqQyZcpkAImh1QyUpKNDU21Ptr8KJOCiQlCVq4UUpSUaAlAStXCh3FJGhJK1cPi6JewfScB80I31fmy75Jjd02r965w+5Qf1UgRRS2vz5KgGM9In66OjLmYj9KI8I+pILX8ip0eMJeqw6Olp81VPVM2Z9SPIAQjV9T9UbMtjXtP54EOCPtkdB9CsHNRJril/hDRc6YljhySqD+VovFFdNrX2CHCWAGVmuM8aKTH1YeZ/RFjbotCUJJKRrKTwmTpKWhJJJJS8JR5poToKb/T3GvHyXdrGhn4ylXv2gNYXHvATYmdQ2kY2VWXVNJcxzIDp855TWdWyZiiKWdg0a/MqIxkZHT6nZuQy44Qj6jYGwGqb9I3V9ZA8VNj2O+i7XwKrV9XzmH3PFg7hwBCsMzOn5WmQz7PYfz2/RTJQkN4/4uv4M2PmYE0JV4T/iE4lTBQ3Y2TU0PqIyKezm6qLMismD7D4FRGPbVtRyR6+n+XdtNUghNeCNFMFREMoZEfemjxUvgUoCCmOiiWg8qT3VsEvcB8UD1bbnbMZm4/vFOjEn+K0yA3+xa97Kxr9I8N7lR2jDZ9syoNp/mqf70n24uCS55GRl+HLW/FUsq45LvUdJefEhWMeMn+71J6+TSz8xWkdZdANo+Pm177332uttdL3c/wBwTUjcdo1J4USxzddNPNEYWtIe3QhWdOjnG713SGl41IP3JiwtEmY8YVoXhw+iTPmEmvlu0sJHA1CFhdwT7FpbmfvGfglvr/eP3J7KHk+0fiEPZtdDxr5FHRBEhuCEgAI3AkjxA/2ppYPzj93+1EoexntIJae3mmupLjLRA7EkJaKAkdhbDdX+9+CkNp1Bn5IRrc0jf38CCiVPZW6Ylp5BSRqN1/aO5+5Lczu4/crDtjgC1h8QeyG9m78whDRdwz7FFvr/AHvwTsspD/fLma/R0M/NDND50GiiGt1DhqjotPEN9GVrq3EFgIEazqoFxPfhS9vHKb03dgUkUTsGMpJwBMO0SIA7ykpTRLgPEq4wQ+AOFTAII+9XaXtILnaDuUCuj4r2ucNB37KqG7rSAP8AUKzkOYBIIIA0hVGucDKQ2TLdcnsoOiUZ7YQS13MGPFFaofeis2kauDfjKhUWtcDwR37ItjGPG5v0vLukheK/32/j/cltYTo9v3n+5B9K2PoH7kq2sDgHyPPhJOo3FJ/S8x+P9yYsaOXtHzP9yuB7BoTxweyZxpeC2wT5gJUnVphrf32/en2t/eb96jbRtM1+4eEFCNb4nYR46JaK9XYpto7Pb96fb/Kb96HU2vd7jH5ES3FAG6s7vEJUEWVQP3m/ekgbHc7T9ySVKssFINUqq3WPhomOVYGO791IlIjbW26py0AKwyhxBdGh4QbgWu28IWoxpEpNYXPDQp01yXPP0WjVXel4hta+4tkTtaigCy1DVA4QDytXPrFNJMROgWZWwvsawckwgEyFGl66y57WjnlWDRHIVnpmP62Tc8CWsG0fFXMnHFdTnRwCUiV0Y6W4DuSnrbue0eKZXMCg2ZQbH0WSUVgFlj6AUW1NLSfM/gtf7HAmECnFJpa6OZP4lMtk4XLtZtahFaGfVsqBjuqEJw2WSFFLjNoM+rOnEJZAq3fofox3TUsJnThEdUdp07JEqA0R4+TkUO3UvLPgdPuWji9QpyXFmc1o0kWDQz4LJCnWPePNCUInca9xuux5Zw+U6dtw7PoYLnfocn0/JyM3BzDHo3V2TxDgVmtqBaPak2ke7TUFRHH2l9ottR5iQ3iPoSHUOD1ZokhoHjIQrKL2icjKZW3v7gPyLLyK3hhMnTzKqgSUhh68Q+kVS5wjThP1kXs+m/VhuZi/bq7BbTBO4nnb2hc/1DqF7XGmmKqgSCG6HTxK6j/F7bQ+rKotcfUaQWtLjt2uEHRc/wDWHp7KMu4VD2hx/vThjiCCfV5sUs+SQIB4R/V0/FxnaQeQ5dt9SMTpXVen5GLk498uh25ryBuLHcfcVxbBuYR3C2Pqp1IdL65j3PdtptPo3eG1/B+9StcWNUn1o6TXg3MupYG1Ttc0eKzMrFYyivJp/m36OH7pXoH1mwqsmq+nQ7hLD58hcR00tfTdg3aTLTPY+KAXSH4up9Rz0vJzLOm9RortdcN2O94BO5o1Z812r/qp0L1W2nEr2xtc2NPIrymp9+FlMuYdl+O8Oa7zavYel9VxuqdOpzGOH6Vv6Rv7rxo4felQQJHZzs76qdFNUsxWN0gwPxXn1nSqsTqdvT8oGJmp8xLTwvWxbW9hY5wkaFcP9cOnm2oZVI/T4pkEd2dwku1I16PKdV6a/p9rYO+i4bqrPytPmF1P1Txug9ZwnYt+LWOo44lx72M7O+XBWZjXU9VwDh3EBztann8ywcfesjDyMzpPUGZFcsyMd+rex/eafIhFbsbDo9c6FV0rqIDwXYWQf0bhpsPdpQs3oIZhnMw3GxrNbqzq4D94Ls892B9YukC2ogsvbMfnVWjsfgVyfTs27CufhZQh9Z2uB/Oagkj8UP1Xv6QM37L1eptmPeQ1lx/wb+0+RXcu+pnRG2F4oBY+PbJhvmPiuA6z01mNYMnGh2Jdq2PzCeWldF9VPrPZZWzpeY+bGiMewn6TR+YT4jskQqMjdEunn/UvpLqHNprFTyPa8HUHsVxDukijKfhZc131nRw4e3s4L0c5FgdscedWk/kWL9YemftCkPrG3Kp1pfxP8koArpReOz+kXYjPWZ+kpPLh2+KL0dvSsqcPOb6dr9KckHTd4FWcbPsh1Noh49ttbvH4LOzMUVvNlQ/RO4H7qcs21DLJ6W7DynYmT7bBqx41a9vYhAuwn1t3tO4d/FamJls6lQ3p2c6LW/0XIPIP7pKq2MyMa92LlN22s5B4cPEJKNdGljGkOLchpNbtN45b5o767sUmoPDqrNWP5a8KF9Jad4EDuEbFrdZUWPG7H8Z+ifFqSPBpvqcNeQnq2B3vEt7xyrVmNZQ5oed9Vn81aPou8viovwbg31a27m90lN/FwMa+HSXtPaUs7oW0bsWR/JJmVQws63DtFlY3NP06zwf7l3fRHYfWKd9BkjR9Z+k0+Y/im6hkBiR2L50ayHFjpa8ctPKcb288L0Lrf1Kbk1G7GO24cH+BXE24l2LkHFzGGq0ePB8wnLDGkVLqHSL90Hixp1YfGO4TPw/TeBY/wBj/oXN1Y5GswbmDcBp2I4KE2y2mWOburd9Kt30T/tSQSeqV3S8uuv1KyLGc+1AZZY0xJBnVsxKt4ua/FO+lxfQfpVu1c3+8K/Zi4vUq/VxyG2xwkoXuDRdToOD9WOrtbS6y2jNjWpz43f1SrnV/wDF+DSX9NueLG67LDId5SuJtpvxrA2wFj2mWkafMELqvq/9e78QNxerTfjjRt41sb/W/eQoLjkkdyXmbOlXVZDsXInHvaY2PHPwKd3S8+nUCR5FeoZvTej/AFkwhawtuY4fo72H3NPkey43P6d1ToLz67Tk4M6XASWj+WiinndmTu2bHSkt77XhbPtG8bYnzSSVo2OifVez7BXdcNtl43keAPCtZf1fLKw1n07XCtvz1J+QXZDHHAEDsOyr/Z/VynPA9tA2t83O1d+EJhZAQBTy9nQG1MDRwBAXGZRDcq0NAIa4gTrwvUeqssx8S3ILZbUwu08uF5Y5lr3FxY6XEng90YrZnZPkuqOA11TAx9r9rmjiWjkLs+mdFbjdOore2H7A58/vO1XMfV3pr+p9Ww8ZzT6DHGywxptaZK9NuxbHTtHPgiVRfOvrSxlNlNbQNZcQsvCtqDneowHa1zmO4IcAtD60etZ1i1hY7bSAwaH4lZNdVpEtYSHCAYMGUhstkfU9V9Vemz0s5D263vc75D2/wT/WGluP0+x0QXQ0fMrrOm9L+y9KxMZo1rqaHf1iJd+K5j6812049FZaYe8uJjSGjv8Aegd19+l46t7WPBdW17Pzmkchb31WwRl5mZaB7GBrW/NYQqsOoY77iu+/xfYkdOyrntM23wJHZohE7LImiyu6U1tFjo+ixx+4FV8PpDTgY7jy5gP36rqeoVMbgZJgfzbh94hNVhxhY7Ggeypg+5oTeFk4w+d/WjDbj49RH51gH4LDZYGOB2NcBy0jkLsfr3iW14uMdhh13YfySuONbwJLSB4wnDZjmdXY+r3TB1G3MdW3a1jmkN5gOnRauT9WnspeYGjSfuCs/wCLmvXqIe0jWqJHk5dfk4nqt2tA1BH3oEdV0ZCqfE665LhIG091bowXPNVjXNcx1rayAfcC7yKFZU+q+2twILbHNj4FExi6vIqfB9tjDx4FOWAvT/8ANfKbIDCIQmfV7L+2vx9jpNbbAPKYK9IAa8B0fSAP3hV7KmNz6bY1cx9c/c7/AL6mcHiy+74PBXfVTMfW4BjiYMLkGVuDy1wgtJBHmF7ttHgvIfrBhfYeu51JadhsNjB/Js9w/KnAUsnLiIY/Vp1jesVVMdt9eaz8xI/Iuo6h9XrHlxf9LuuTwMrEx7W3+m9uTW9j6Xh3t9rgSCPgvW3sGTUy1one0O+8SgQmMq0fHbMJ+Nm5GK8QWAuHmOUqMgU2Ns9JljWkHY4aGF0n126bbiZuPnMaQ29pqeQO44/BcuWEaEESiFp3fS66HZmBRlR7bqw6PCey4nruA7pvVm2gbasjWe27uu7+p+UzN6BVT+fjzU8fDUKr9buh2ZvS7HVsm7H/AEtcfyfpD7kqorrseIeBynGvKeYBcYOonsux+pmUc6i3GbWyo44aTsEB+4n3HzXEuc+8iwg7iAD8gun+oGQMfq9lL/aMiuGz+80zCK26NvX24dtdjLAfafY8fkKhl9OcWEn3A6FbLmhzS08HlDaA9hY7luhTaXcb5P1DBf0fqpqgjHv91Z7a9vkg9RIbkNe4B5cwTPBiRqu9+tP1fd1Lp7xW2cmmbKCO5HLfmvObbn3Bm8Q+sbHg8yCUQgvU/U3JZk3P6e2ttTiw2bmz7yI5B8k/1r6FaG/b8dv6aj6YH5zB/csr6pZleF13HtsMVv3VuP8AWGn4r07Jx22tJADpEHzCR7qB6F8qqf8AacKyDLS2SPMKlRkVU2Ns9BrtmvJDpHfcO62+vdKs6FnPcxpGDmA+n4MeeWrnwDCKC+u9OZRn9Nxsnb/Osa6e8o9mFTbWWOaA7xWV9R82vJ6FVQHfpcYlj29wJkLfcO45CFBXEXgPrP8AVy1s5+I39NX/ADrB+e0fxWR01uNmN9O36LxE+BXqN9LbmSAJXBfWDolvSck9SxGH7JY79YrA/m3H88eSSdDr9rzD20UXOrdULDW4tJLi2YPkurq6ZR9ZOhNyKgasrHc6upxO4gt4a53cLkbjvue8a7nEg+RXbf4ur2OpzcJ5ElzbGg8wRBhFANF5vEiq9+Jn1Raww9h0+YS6pgY+Ca76SXY98/o5gbhquz+s/wBWf2jWL8YbM6kTU/s8fuOXB5mRbZS3HuaWXUvIfWeWuiEkludGswsq9vTL6Iry3bS4OJhx+iQI0IPdHux8roOZ9my/0mPYSKriPa8eB8CsjAtOPm498x6drHz8CF6v1TpWL1TFNVrBZXYJ05BP5zUEB886l0rGycd2Zhja9gmxg4I76Kh07Oq6dlMyqDa17PzmOADvJzY1C083Dz+g3Ox7yX41rXNqv7OBH0Xea58CEVF9m6fmMzcKjLZrXewOB8CeZVLrv1dwur45Za2LBqyxv0mHxCqfUTIF31frrJl1D3MI8pkLofo+bUkAvlVtWb0LJ+yZ7d9LjFdv5rh/Aq4cDAzK9wHtPcctXedT6VidSxn05DBYx448/Fp8V571HpfUPq3kbpNuA4wy6NWz+a9Jc5FlGPi3vqvD3uY4j2EN0V7F6a7Jquzeibyccg24ryC8tP5zSPyKj1C1t+W+5vDwDp8Fv/4v7xX1izHcfbk0kR5sM/xSW9WjVl4vUa/Qym7bBproQVnZvTrMV24e+qdHeXmu9+sX1OpzicvCIozBw4aNf5PC4/7Tk4lj+n9SqNdgBbDvyg+CSSF+j9ar6PkG3GN0Ee5gcPTcf5TF6bi5GN1XAqyIDqshgMHUa8tXjUL0r6g5Av6I6gmTj2ubHgHe8flSQFf8yOlftL7RtPofT9CfZu8YSXRw7fE6Rz3SSTa1r/TrdYfzRoPPsmoqNdQa7Vx9zz/KOpUbf0l9dPZv6R/y+iPvR0FLQCIOoKFkenVQ+zY2QDAgansEZV8j9JfTR2n1XjyZx+KSl8LEqxMauitoaK2xoO/534o8J0kVIMwNbjWu2t3FpAkck6BPj41VFFdLWgNraGjQeCjlDe6mn994c74M935QrCSFKt1FrHYVwc0Hc3Zrr9Mhv8VZVbOG8U1f6S1s/BoL/wCCSktVNTKmMDGgNaGgQOwUw0AQ0ADwCkkkpo9ZMdMv8SGtHzcArrW7WhvgAPuCz+t64bKx/hLq2/8ASn+C0UlLFrXfSAPx1VPqVFLsR01tPub2HirqrdQ/orvi38qSk4Yxs7Whs8wIUkkklOf1THoNdL3VtO2+okwP3wrnoU/6Nv8AmhVusSOn2OHLC1/+a4FXQZCSlKtme0U2fuWN/wCl7P4qyq+e0uw7Y5aNw+LPd/BJTZUHU1PO5zGuPiQClW7dW13iApooaOZiY26m51TD6Tx+aOHDaroAAgcDhQvZ6lL2dyDHxGoSpfvqY7xAQUu+uuwRY0OHMOE/lVS/Bw23U5JoZurJZO0aNerqjcz1KnM8Rp8UlKrqrrBFbAwHnaIUioY9nqUtd3iHfEaFERU5+R07BGTVluoYS0em47RG1yssw8Rjg9lNbXjUODQCESxgsY5h4cIUMZ5dUA76bPa74jRBPRKh2ex4s/NPtf8AwKKmc0OaWngiEUKVV3S+mPcXuxKXOcZc41tJJ+5GpcdpY76TDB8/AoiSnMs6H0ivIGT9jqlwDHewQNdCBEStJoAAAEAcAeCdwDgWnUHQoVDiJqf9JnB8R2KCVZGLj5VfpZNTbqiZ2PAcJHfVUv2F0eq03DCp94DXgsEacED5rSSIBEHgooQY+DhYpLsaiuou5LGhs/cjodZLHek74tPkioJYO9h3fmnkJWV121uZY0PY8Q5pEgg9lLQj4qDTsOw8H6JSU5//ADZ6COMKof2UsboPS+n5TsvFoFb3AAxw2P3QtRMkhXInlUMvoPSM277RlYtdlxABeRqQPFWx+idH5h4PgURJLjt+q3QqXvsbhsIsjc06hsfujstWquuqttdQhjRDR4BTQzNRkfQPPkkpjlYmNmUmjKqbbU7UseJCyn/U/wCrxsdacNp3RLQSGiO4Erbnukkho9O6P03pu44NXoiz6QaTB+RV5RMtMjjuE4IIkJJWgt1HHcKNlVN9bq7WCyt4hzXCQR5hEUSCDLfmElOEfqP9WySfszhJmBY4AfDVLH+pvRsLMbmY7LA5kbWix3tP70zK3muDhITpKWBBGhmNFR6p0TpvVqhXnUizbq149r2/Bw1V0tPLefBJrp8j3CSnnD9Qug+pvDbdkQa95gnxnlaPSOgdO6S978Hez1I3tc4uBjjQrUTEdxoUlLfn/JJR3O38awkkpoV5GaLboxC55drL2CB+b+d4Iv2rqH/cI/8AbjP/ACSSSb9q41/VV9q6h/3CP/bjP/JIDMnO+23H7ITZtbtBez6Hlr4pJI/arT+qn+09R/7hf+CM/vS+1dR/7hf+CM/vSSS+1Wn9VC7IzvtzS7EO70jsG9niN3dH+09Q/wC4R/7cZ/5JJJL7Vaf1Vfauof8AcI/9uM/8kq92RmnKxicQj6cDezV0CPzvCUkktfFWn9Vsfauof9wj/wBuM/8AJJ/tPUP+4R/7cZ/5JJJLXxRp/VaXU8jMcMT1MUtAya/z2GdHeDld+09Q/wC4Z/7cZ/ekkl9qdK/RV9pz++Gf+3Gf+SQc3IzDjO3YpGrfz2eP9ZJJLXxRp4Nj7RmSf1U/57P/ACSf7Rl/9xT/AJ7P/JJJJfarT+r+LV6pfkHp2SH4xaPTdruYdY07qyy/LDG/qxOg/OZ4f1kkktfFOlfo/iv6+X/3FP8Ans/vUbL8n0378Yhu07ve3iNe6SSX2q0/q/ijw78wYlM4xcdok7mj/vyN9oy/+4rv89n/AJJJJIX4oNf1fxUMjLn+in/PZ/5JBxb8kVHZjOLNztvuZxP9ZJJH7VaeCb7Rlf8AcV3+ez/ySX2jK/7iu/z2f+SSSS+1Gnghx78kG3ZjOLN5gbmaH8787xR/tGV/3Fd/ns/8kkkl9qTXgr7Rlf8AcV/+ez/ySDVdf9ptLcd3A3t3M+l/neCSSH2qFa7J/XyP+4z/APOZ/wCSS9fI/wC4z/8AOZ/5JJJH7UaeCP1bjkCKHNMe8Szjt+cjerb/AKB33s/8kkkkEmvBf1bf9C772f8AkkG2yw217anCwebdW959ySSRUPon9Sz/AETvvb/5JL1LP9E772/+SSSRW/YjueSGyxzXT7NWzPyKmLLO9Tp76t/vSSQ6p6L73/6N33t/vUbHEt9zHDw+jz96SSJUyYX7RuaZ+SlJ8D+CSSClnEbTuGnfhRrLwIgkfmnySSSV0ZyfD8iROhkad0kkkI2SD7JdWePL70ST+6fw/vSSSSVSfA/goyd0tHxHZJJJTNJJJJDA/S9v0u47KY41SSSSpQcATzD+xSSSUybu/OEFOkkkpj+f8kkkklP/2Q==" />

The viola sonata is a sonata for viola, sometimes with other instruments, usually piano. The earliest viola sonatas are difficult to date for a number of reasons:

  • in the Baroque era, there were many works written for the viola da gamba, including sonatas (the most famous being Johann Sebastian Bach‘s three, now most often played on the cello)
  • in the Classical era and early Romantic, there were few works written with viola specifically in mind as solo instrument, and many of these, like those of the Stamitz family, may have been written for the viola d’amore, like most of their viola works – though it is now customary to play them on the viola; it was more typical to publish a work or set, like George Onslow‘s opus 16 cello sonatas, or Johannes Brahms‘s opus 120 clarinet sonatas in the late 19th century, that specified the viola as an alternate. Two early exceptions were the viola sonatas of Felix Mendelssohn (1824, posthumously published around 1981) and the opus 1 sonata of the composer Ernst Naumann (1832-1910), published in 1854.


wikipedia3




Brahms: Viola Sonata No. 2 in E major, Op. 120



error: Content is protected !! Contact maestro68blog@gmail.com if you wish to download this content
%d bloggers like this: